Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The face of the phone is going to change, according to Bob Iannucci, head of the Nokia Research Center (NRC), in Helsinki, Finland. The NRC is hard at work, along with other branches of Nokia, on software and hardware for future cell phones.

While your current model might seem like the digital version of a Swiss Army knife, Iannucci sees lots of room for improvement. Novel displays and myriad coordinated radios could make your cell phone a lot more entertaining and useful.

Last week, Nokia announced a new research lab and collaboration with Stanford University. Technology Review caught up with Iannucci in Palo Alto, CA, to ask him how Nokia’s research is pushing mobile devices forward.

Technology Review: Your job, as the head of Nokia’s research center, is to imagine the mobile devices of the future and to use existing and future technology to make it happen. From this standpoint, what new technology do you predict could be in phones five years from now?

Bob Iannucci: One of the things that we’re intrigued with is the potential for what nanoscience and nanotechnology can bring to phones. Here’s an example: right now, we’re very close to having 8 radios and 11 antennas in a cell phone. In a couple of years that’ll be commonplace. Now the question is, as a manufacturer of phones, how do we simplify 8 radios and 11 antennas? Well, the holy grail of simplifying radios is software-defined radio, where a radio, controlled by software, uses a broadband antenna to access a wide range of frequencies, instead of a single band. We’re looking at material-science solutions on the antenna side to make software-defined radio happen.

TR: Like what?

BI: At Chalmers University, in Sweden, researchers have demonstrated, using carbon-nanotube technology, a tunable radio-frequency cavity that, in just the first version, can tune in between two and three gigahertz, picking up multiple bands. So now the idea of taking the antenna and running it through a tunable carbon-nanotube filter into an analog/digital converter might be a key enabler to actually making software-defined radio work. That’s breakthrough thinking. That could be an enabler to making that 8 radio, 11 antenna thing a whole lot simpler.

TR: How would this affect the average mobile-phone user?

BI: It boils down to simplicity in cost. If we can drive down the cost by simplifying the guts inside the phone without compromising the functionality, then that’s big. And software-defined radio could also enable cognitive-radio capabilities, where two devices dynamically create the best wireless channel for transferring data. This would make it possible to transfer a movie from your PC to your phone in two seconds. The idea is that the radios in my PC and phone realize when they’re close to each other because the signal strength is high. So we can use very weak signals because we’re only covering a short distance. We can reduce power, increase the bandwidth, but not create a tremendous amount of interference because we’re only transmitting at low power. And the radio’s smart enough to figure all that out.

4 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me