Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Scientists who work with solar cells are constantly looking for ever-more-efficient materials and engineering approaches that are better able to convert sunlight into electricity. Now, researchers at the University of New South Wales, in Sydney, Australia, have completed the preliminary steps in making an all-silicon structure that can, in theory, eke out nearly twice the electricity that traditional silicon solar cells–the industry’s mainstay–can.

To maximize efficiency, Martin Green, lead researcher on the project and professor of photovoltaic- and renewable-energy engineering, and his team are developing a multilayered silicon system that converts varying wavelengths of sunlight into electricity. Each layer is tuned to collect light at a certain wavelength, says Green.

Multilayered systems–commonly used by NASA to power satellites–have been studied for years. Currently, these systems can operate at an efficiency of about 30 percent. By comparison, the best single-layer silicon cells in research labs have an efficiency of 25 percent. However, the multilayer cells are often made from stacks of exotic semiconductor materials composed of gallium, indium, phosphorous, and arsenic. These materials, Green notes, are expensive and not practical to mass-produce on the scale that’s necessary for solar power to compete with other sources of power generation.

So, Green and his team turned to silicon–inexpensive and abundant, but traditionally bypassed when making multilayered solar cells–to see if they could control the material’s electronic and optical properties so that it could absorb different wavelengths of light. They used a method that mixes small amounts of silicon with silicon dioxide, silicon carbide, or silicon nitride. When heated, the silicon precipitated out into quantum dots–tiny crystals that absorb different wavelengths of light, depending on their size. The researchers then showed that they could make the silicon quantum dots, which are sandwiched within the layers, in different sizes, depending on the thickness of the layer.

The researchers tuned the dots to absorb light at wavelengths from about 1,100 nanometers (infrared light) to roughly 600 nanometers (red light). For the complete solar cell to work, the layers of quantum dots would need to be stacked according to their size. The top layer would contain the smallest dots, which absorb the shortest wavelength. The rest of the light passes through to the layers below, which would contain subsequently larger dots. Green’s proposed scheme contains three of these quantum-dot layers.

1 comment. Share your thoughts »

Tagged: Energy, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »