Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »


The new types of lasers used to illuminate a screen are actually made out of the same material–gallium indium arsenide–as the lasers in DVD players. The major difference between a DVD laser and a Necsel laser, Mooradian explains, is the architecture of the laser.

Mooradian decided to look at surface-emitting lasers–mostly used for low-power applications such as short-range optical communication–as an alternative to ones used in DVDs, called edge-emitting lasers. He found that he could get much more high-quality light out of surface-emitting lasers than out of edge emitters. No one had thought seriously about using surface-emitting lasers for high-powered applications before, he says, “and I just got there first.”

The light that comes from gallium indium arsenide laser is naturally at infrared wavelengths invisible to the human eye. Mooradian added a crystal composed of lithium niobate–an inexpensive material found in mobile phones–to knock down the wavelengths to ones visible as red, green, and blue. Then he added the final component of the system: a simple piece of glass that encloses the laser cavity where laser light is amplified.

Using lasers instead of bulbs in a projection system can not only increase the quality of light, Mooradian says, but the laser array also lasts longer and can allow for lighter, thinner, less expensive projection displays.

And compared with plasma televisions, the color produced from lasers is better, says John Reder, worldwide strategy and business-development manager for DLP TV at Texas Instruments. “I think the color gamut is the first thing you’ll notice” when comparing the two types of displays, he says. A pixel’s color in a plasma display is created when an electrically charged gas–the plasma–excites a chemical compound called a phosphor. The phosphor glows when struck by the electrons from the plasma. But, unlike a laser, a phosphor emits light that isn’t spectrally pure.

A laser-based projection system can employ as few as three lasers, Mooradian explains, for smaller applications such as mobile-phone projectors used to share pictures and video or pocket projectors used for presentations. Displays for home theaters will use 72 lasers, with a total laser system taking up less than a cubic centimeter of volume, he says. And, he adds, his company is looking to break into Hollywood with theater-quality laser projection systems containing hundreds of lasers.

There’s little doubt that lasers will allow more colors to be shown on a screen, says Steve Jurichich, director of display technology at DisplaySearch, a consultancy in Austin, TX. But, he adds, the company might be a little ahead of its time because the same color gamut isn’t available over the airwaves or from video cameras. “Ultimately,” he says, “you can show more vivid colors, but it won’t be what’s naturally recorded.” New color standards are imminent, however, and Jurichich suspects that within a few years, broadcast standards and Hollywood will catch up.

Jurichich adds that he expects that laser TV will be competitive with traditional projection television initially, but he is hesitant to say that it will overtake plasma, as prices for that technology continue to drop.

But even if laser TVs don’t dominate the market, they could find a comfortable niche in front of some living room couches. As the home-theater market continues to diversify and expand, consumers are going to be able to get more screen size for the dollar, and image quality will continue to improve, says Texas Instruments’ Reder. And lasers, he believes, “will have an ability to impact the market.”

5 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me