Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

If doctors could look for tumors that small and in structures that delicate in humans, they might catch cases of breast or pancreatic cancer sooner, Tearney says.

The device could also make new procedures possible, he says. With such a small, sure instrument, doctors could burrow deeper into the brain or poke safely through an amniotic membrane to examine a fetus. They might also be able to conduct endoscopic exams without administering anesthesia.

“The technology looks extremely promising to me,” says Wayne Lencer, chief of gastroenterology and nutrition at Children’s Hospital Boston. Lencer knows the size-versus-image problem firsthand because he uses endoscopes to look for gastrointestinal problems in children. A scope as thin as a hair could explore the smallest, most fragile ducts of the pancreas “that are now not accessible,” he says. And with 3-D imaging, he might see “diseases not readily apparent” in his scopes’ 2-D images, he says.

But the new scope, still a prototype, has a long way to go before reaching humans, Tearney says. The team must test safety. And it would like to add color and increase the resolution, or add more pixels, to the 3-D images. The resolution–now only slightly better than that of small scopes used by doctors today–could be boosted tenfold by tweaking the optics, Tearney’s colleague Dvir Yelin says. A big challenge, Tearney points out, will be equipping the now-flimsy scope to route around twists and turns in the body without adding bulk.

If it all comes together in the hair-thin device, Tearney says, doctors could get a safe and clear look at any tissue in the body. “No one has ever had these capabilities before,” he says.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me