Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

For doctors, endoscopes are like eyes that can see far into the body. But today’s endoscopes don’t have the combination of small size and good image quality required for delicate procedures. Now, researchers at Massachusetts General Hospital (MGH) have made the first hair-thin scope to image in 3-D. They say if it’s good in humans, it could change diagnostics and minimally invasive surgery.

Today’s endoscopes suffer from a size-versus-image problem, says Guillermo Tearney, professor of dermatology at Harvard Medical School and leader of the MGH team. Scopes that image clearly, usually using a millimeter-size camera, are too big to go many places in the body. But smaller scopes, which can be as thin as a human hair, provide poor pictures.

Doctors who do the most delicate work need small scopes and good pictures. When endoscopes are penetrating layers into the brain, looking at a fetus, or threading through a tiny duct, size is important: big scopes can plow big holes through sensitive tissues. But good images are also needed for sure navigation of these areas. No scope does it all. So doctors performing these procedures must choose between bigger holes and clumsier movements.

That’s why the new scope is optimal, Tearney says. It’s as thin as a human hair and nearly as flexible, but it also shows doctors 3-D images of patients’ bodies.

The trick to the device, which is described in the October 19 issue of Nature, is better use of light, Tearney says. Today’s smallest endoscopes work like periscopes, shining white light down a bundle of glass fibers. The light bounces off tissues and returns to the doctor’s eye, creating an image that looks like a photograph. It’s good, says Tearney, but “suboptimal.”

With the new scope, white light shines down a single glass fiber, then breaks into a rainbow of colors. Each color hits a different area of tissue. The colors reflect back to a spectrometer outside the patient’s body. The spectrometer then measures two qualities of the reflected rays. First is intensity, which in the final image translates as shadows. Next, it measures how the returning rays compare with rays bounced off a flat reference object, creating topography. A computer then combines the shadows and topography into a 3-D image that looks like a computer model of the tissue.

To demonstrate the new device’s “proof of concept,” the researchers imaged tumors in the abdomen of a live mouse. They punctured the mouse’s underside with a tiny needle and threaded the scope into its gut. The scope’s 3-D scans clearly showed tiny bumps–tumors–on the abdominal wall. The researchers reported said that tumors this small wouldn’t be visible with any existing scope of the same size.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me