Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

An innovative rover robot designed to explore planets and moons is undergoing final assembly this week in a lab at NASA’s Goddard Space Flight Center. The robot may also be useful in hazardous environments on Earth, its creators say.

Instead of driving, walking, or rolling around like other vehicles designed to traverse distant, rugged landscapes, the new rover changes its shape and topples along, veering a bit from side to side as it moves ahead. “We call it the drunken-sailor walk,” says Pamela Clark, one of the designers of the project at Goddard and a professor at Catholic University of America.

The minimalist device consists of an adjustable frame joined together at key points called nodes. The thin struts connect to the round nodes to form a tetrahedral shape, with another “payload node” at the center to hold the computer systems and sensors. The robot moves by extending or contracting its struts to change its configuration and shift its center of gravity until it tumbles over, then begins the process again. Depending on the terrain, its overall shape can change from tetrahedral to cubic to nearly spherical or flattened out. Ultimately, it should be able to negotiate its way across deep crevasses and climb steep cliffs by shifting its shape as needed.

Tumbling by changing the center of gravity may seem like an awkward and ungainly way of getting around, but Clark says it’s efficient and useful for dealing with obstacles, slippery surfaces, and steep slopes.

Last month, a small, single-tetrahedron version of the device had great success climbing the steep, rugged sides of Meteor Crater, in Arizona, in a test run. After months of tests in controlled lab environments, the device performed well despite extremely windy conditions. “We felt like we were about to be blown off the crater,” Clark said. “It was a good test.”

A larger, more advanced device made up of 12 tetrahedrons is now going through its final assembly in the lab, and it will be tested over the next several months. Clark says dividing up the structure into more tetrahedrons allows for much finer control over the shape and more efficient movement, with only minimal changes in the strut lengths.

Much of the work has been on the control algorithms. Clark says it’s tough to think intuitively about a robot that moves without wheels. “When there are 26 struts, there are little games that you can play to think of clusters of nodes in making it walk,” she said. Ultimately, the individual struts would be made interchangeable so they could be easily replaced in the field in the event of damage.

Now the main focus will be on developing a variety of “gaits” that the device can use to negotiate different kinds of surfaces, terrains, and slopes. This involves figuring out how far each strut should extend and in what order. Clark has just worked out a control sequence for what she calls an amoeboid gait, which makes the device look as though it’s slithering across a surface. “We set out to make the most efficient, low-to-the-ground gait we could,” Clark said. “An amoeba moves by trying to extend itself horizontally, with not very much fighting of gravity, which turns out to be very important in this.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me