Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

 A technique based on an inexpensive process used to print electronic circuit boards has been developed for constructing complex three-dimensional devices, such as a micro-reformer for fuel cells. The new method could be a versatile way to more cheaply and easily create microscale devices, making it practical to fabricate fuel cells for recharging two-way radios. It could also help make some types of chemical manufacturing safer and more efficient, and produce wireless-tire air-pressure sensors inexpensive enough to be standard issue in new cars.

The process works by building up hundreds of layers of specially formulated inks containing various materials, such as polymers, metals, and ceramics, to form a three-dimensional structure, complete with hollow passages and chambers sealed inside, says Arthur Chait, CEO of EoPlex Technologies, in Redwood City, CA, the startup company that developed the new technique. For each layer, the technology prints both the materials that will make up components of the final device and space-holder materials that will help support the next printed layer.

Each layer is cured by a flash of ultraviolet light before the next layer is printed, and once all of the layers have been printed, the whole assembly is fired at high temperatures, about 850 degrees Celsius , depending on the materials used. These materials have to be carefully selected so that they shrink at the same rate during the firing, and so that the space-holding materials can diffuse through the other materials, leaving behind empty spaces.

One of the company’s first devices, a fuel-cell “reformer” for stripping hydrogen from methanol, will supply enough hydrogen for micro fuel cells that recharge 20-watt two-way radios used in emergency areas, where grid power isn’t reliably available. The 300-layer device shows the complexity possible with the printing technique, Chait says. The layers form a total of 33 discrete components, such as heating coils, catalyst beds, “chambers, passageways, a diffuser section, a reformer section, and a combustion section,” he says. Methanol is fed into the device, and the combination of steam and catalysts free the hydrogen. The entire reformer is the size of two dominoes.

Small reformers have been built before by researchers at MIT, the Pacific Northwest National Laboratories, and the University of Illinois. But so far, with the exception of a shoebox-size device, they have been inefficient, transforming only a “very small percentage” of the energy in the fuel into electricity, says Klaus Jensen, professor at the MIT Microsystems Laboratory. If EoPlex has indeed succeeded in making a small device that works well in a fuel cell, he says, “that would be a very important advance.”

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »