Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Small, artificial blood vessels are meant to offer hope to cardiac-bypass patients. The problem is that these tiny synthetic vessels tend to clog. Now, biomedical engineer Donald Elbert and his team at Washington University, in St. Louis, have developed a new material designed to trick the body into building vessels from its own cells.

The root of the clogging problem is thermodynamics, Elbert says. When a vessel is made of modified Teflon–or anything besides the body’s own cells–clotting proteins in the blood bump into the vessel walls, stick, unfold, and become active, setting off clotting reactions. The clots are too small to block large vessels, and in fact, Teflon aortas are common. But in vessels narrower than six millimeters across, clots make clogs. Consequently, cardiac-bypass patients can’t receive small artificial-vessel implants. Instead, small vessels have to be harvested from the patient’s body so that blood can be rerouted. This is an extra surgery, and eventually, the patient may run out of vessels to harvest.

Elbert’s solution is a novel coating for the inside of artificial vessels. It’s primarily made of substances found in the human body. Polyethylene glycol, the only synthetic ingredient, is a many-armed polymer used in toothpaste and shampoo. When exposed to blood, it repels nearly all clotting proteins that try to stick to it. Albumin, a blood protein, is included to attach polyethylene glycols together. Polyethylene glycol’s arms link to two biologically active ingredients. One of the ingredients is a protein fragment that acts like Velcro, binding endothelial cells, which line human blood vessels, to the artificial lining. The other bioactive ingredient is an enzyme found in blood that can grab a fatty substance, or lipid, from the bloodstream and convert it into a lipid called sphingosine-1-phosphate that sends growth and survival signals to endothelial cells.

Making the concoction is “simple,” Elbert says. All the ingredients are mixed in water and left overnight. By morning, they form a gel.

Elbert imagines that a synthetic graft lined with the coating could then be sewn into an existing blood vessel. Polyethylene glycol would repel most clotting proteins for some time. Meanwhile, the enzyme would make and release the lipid that signals endothelial cells, encouraging them to grow onto the graft edges. The protein fragments would hold the cells on the surface. The gel would release more lipid, signaling the cells to divide and colonize. “After a month or two, the whole inner surface of the graft would hopefully be lined with a layer of cells,” Elbert says. The cells would exude chemicals to hinder clotting, as they do naturally in the body.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »