Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A second advantage is that using spin can further increase the information-storing and transmitting capacity of electrons, effectively making microprocessors run faster.

Smith says that electronic applications might be far in the future for his system, though; instead, it might be best suited for opto-electronic applications, such as lasers and LEDs.

Specifically, he explains, the spin of electrons in a semiconductor laser can affect the photons emitted from these devices: an electron with a certain spin can create a photon with a corresponding spin, resulting in polarized light. Polarization–the general orientation of light waves– could be exploited to add another layer of data to light used in telecommunications. Currently, information is encoded by adjusting the frequency and phase of light; polarization encoding could therefore increase the capacity of optical lines.

The Ohio researchers’ novel materials have “good properties,” and therefore the system could be a candidate for optical applications, says Kannan Krishnan, professor of materials science at the University of Washington in Seattle. While the group has not built actual devices, he says “it’s very promising.”

Chris Palmstrom, professor of chemical engineering and material science at the University of Minnesota, says the work is the first to grow magnetic material on gallium nitride. Still, he says, the researchers have to “prove they can do something with it.”

Proving that the system will work in an actual device is the next step for the researchers. Smith says they will most likely test its light-emitting properties to determine how well the spin of the electrons in the magnetic material translates into polarized light.

1 comment. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me