Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

One compound, a plant-derivative called gedunin, was identified through a conventional screening method as interfering with the hormone androgen in prostate cancer cells, which is an important strategy in treating the disease. But the exact mechanism of how gedunin blocked the androgen signaling pathway wasn’t clear. When the scientists searched the Connectivity Map for compounds that had similar activity to gedunin, though, they found matches to compounds that inhibit heat shock proteins and thus suppress androgen receptor activity.

The other finding involved a specific type of leukemia that was resistant to traditional chemotherapy. A team led by Scott Armstrong, an assistant professor at Harvard Medical School and Children’s Hospital in Boston, determined the signature of the drug-resistant cells, queried the Connectivity Map, and found a match to sirolimus, a drug currently used to prevent rejection after organ transplantation. When they tested the drug in the lab, the scientists found that it re-sensitized the leukemia cells to chemotherapy, reversing the drug resistance.

“That was a particularly gratifying example for all of us,” Lamb says, “because sirolimus is already FDA-approved for another indication. That means that this compound is known to be safe and tolerated by humans, and the path to clinical evaluation of sirolimus can probably be tested in the clinic much more quickly.”

The team plans to expand the map to cover all 1,400 or so drugs approved by the FDA, an effort that should take between one and two years. “We wanted to make data that was broadly useful, so that requires a systematic approach to data generation,” Lamb says. “And then if you can make that database accessible to the world in a way which is easy for the world to interact with it, that would solve a lot of problems for a lot of people.”

The work done by the Broad scientists “is right on target,” says Gregory Riggins, associate professor of neurosurgery, oncology, and genetic medicine at Johns Hopkins University. “This kind of group effort and approach is therapeutic-directed and is what is needed from the research community.”

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me