Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

When a multi-megapixel digital camera snaps a shot, most of the information doesn’t even make it into the final photo file. Indeed, about 90 percent of it is lost during the compression process that creates a JPEG file.

Collecting pixels just to throw them away is a wasteful process, says Richard Baraniuk, professor of electrical and computer engineering at Rice University–and it chews through a camera’s battery life because compressing raw data is computationally demanding.

Baraniuk, Kevin Kelly, and colleagues at Rice are offering an alternative design, which they say makes for a more energy-efficient digital camera. Essentially, they’ve built and tested the hardware and software for a camera that collects just enough information to recreate a picture, while avoiding the traditional compression process.

In their prototype, the researchers used an array of tiny mirrors–a technology developed by Texas Instruments that’s already used in high-definition projection televisions. The micromirror array takes in a small amount of information, and directs it onto a single sensor. Then algorithms are used to reconstruct the image. Since the prototype has only one sensor, in effect it’s a single-pixel camera. However, the algorithm recreates an image with 100 times the resolution of what would traditionally be captured in a single pixel.

Baraniuk and his team recognized that an emerging field of information theory, called “compressive sensing,” offered an alternative approach to conventional image acquisition and compression. Developed by researchers at Caltech, Stanford, the University of California, Los Angeles, and Rice, the technology is based on the idea that datasets, such as those that represent images or signals, often contain a significant amount of structure. When this structure is known, it can be used to extrapolate the image or signal when there’s only a limited amount of available data. This concept of compressive sensing underlies the software for the researchers’ digital camera.

To develop the camera’s hardware that collects the image data, the Rice team turned to Texas Instruments’ digital micromirror technology, which uses a collection of thousands of tiny mirrors that can be angled in two different directions. Facing one way, a mirror reflects the light from the scene onto the sensor, facing the other way it’s dark. The mirrors are angled to transmit a pattern of light and dark onto the camera’s sensor, flipping up to 100,000 times per second.

The orientation of each mirror is random, which is important, say the scientists, because it provides the best possible sampling for the algorithm to reconstruct the image. The random structure is known and fed into the algorithm. In all, only a few hundred samples projected onto the single pixel can provide enough information to reconstruct an image with tens or hundreds of thousands of pixels.

2 comments. Share your thoughts »

Credit: Kevin Kelly

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me