Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

One of the leading candidates for a technology that could make computers smaller and more powerful is based on transistors made from semiconducting nanowires. But until now, circuits made with such transistors have been impractical, because they were too power hungry and too difficult to manufacture. Now researchers at Caltech have built efficient nanowire-based circuits using a process they believe could be reliable enough for mass production.

The first applications, which could be available commercially in five years, will probably be in ultrasensitive, inexpensive sensors that could detect and measure hundreds of different cancer markers or pathogens in a small sample, such as a single drop of blood. Eventually, the nanowire-based electronics could be used in processors for computing.

Nanowire logic is part of a growing effort to find new ways to produce computer chips after conventional methods run into physical limits. Other possibilities include carbon-nanotube transistors and molecular electronics, which would use organic molecules as transistors; but while those technologies have their own advantages, nanowires can be made of silicon, the material chip makers are used to working with. And they can more easily be made into arrays with consistent electronic properties.

In the current work, the Caltech researchers created logic gates in which the centers of neighboring nanowire transistors were spaced at about 30 nanometers, denser than in state-of-the-art devices made with current technology. But lead researcher James Heath, a chemistry professor at Caltech, says that in these experiments, achieving the smallest possible size wasn’t the goal: they could have gone “much, much denser,” cutting the spacing at least in half. Such increase in density would allow far more transistors–and hence more computing power–to be squeezed onto a chip.

The work demonstrates for the first time the ability to exploit nanowires in CMOS, today’s standard semiconductor technology, using a process that could be adapted to mass production, Heath says. Most previous work with nanowire transistors had used older, more energy-intensive technology. And the few examples of CMOS-type circuits with nanowires were one-off prototypes, Heath says, not practical candidates for large-scale manufacturing.

CMOS relies on two kinds of transistors, n-type and p-type. One reason for the lack of reproducible nanowire CMOS devices is that it’s been difficult to make n-type nanowire transistors reliably. Even slight changes to their surfaces, caused by impurities deposited during manufacturing, can lead to wide variations in performance. Indeed, “most everything you do makes them p-type,” Heath says. So after studying how nanowires respond to surface changes, the researchers selected methods for treating the surfaces to remove impurities. This enabled them to make reliable devices.

2 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »