Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Nonetheless, thin-film batteries may not be the next-generation choice for most laptops. That’s because the processes used to make them, such as physical vapor deposition, are still too expensive for producing large batteries. Also, these batteries, which can be a mere one-tenth of a millimeter thick, each hold only micro-amounts of energy–as little as one-thousandth the amount in today’s laptop batteries. While they could be stacked to provide adequate storage capacity, the layers of packaging separating the active materials in each battery would cancel out their capacity advantages. That is, they’d likely cost more, but not necessarily be smaller.

The first applications, such as in industrial sensor packages in high-temperature equipment or oil wells, will be ones in which buyers are willing to pay $100 apiece for batteries that meet their needs. Bradow says their batteries could be made for much less in high volumes, however, eventually making them practical for distributed sensor networks.

In spite of the current drawbacks to thin-film batteries, Donald Sadoway, professor of materials chemistry at MIT, says some versions of them will power laptops–and electric vehicles–in the future. To his thinking, their key advantage, in addition to safety, is that they allow the use of pure lithium in one of the electrodes, which isn’t possible using liquid electrolytes: “If you can switch to lithium, you’ve achieved the ultimate in anode capacity,” he says.

In contrast to the glass-like electrolyte used by Infinite Power Solutions and others, Sadoway has developed a solid-polymer electrolyte (today’s lithium-ion polymer batteries use a gel) for use in thin-film batteries. This electrolyte, he says, could be processed in rolls like newspaper, or some other high-throughput process. Such a process for thin-film batteries, although not now being developed by industry, could bring down costs, he says, while innovative ways of packaging electrodes could reduce size. “We’ve made batteries in the laboratory that are 300 watt-hours per kilogram,” he says. “That’s two times the best lithium-ion [battery] on the market today.”

4 comments. Share your thoughts »

Credit: Infinite Power Solutions

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »