Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

While recent massive recalls have highlighted safety concerns of lithium-ion batteries, today’s battery technologies actually have a number of weaknesses. If damaged, overcharged, or overheated, batteries can explode (see “Safer Lithium-Ion Batteries”). But they also leak energy and lose power and longevity if used in extreme temperatures, say, on a winter day in Iowa or a heat wave in Arizona.

A new type of rechargeable battery will soon be available commercially that overcomes these problems. But at a cost.

These new batteries replace the liquid or gel electrolyte with thin layers of solid glass-like or polymer materials, which are more stable. “Nothing can leak, nothing can freeze, nothing can boil, rupture, or explode,” says Tim Bradow, vice president of business development at Infinite Power Solutions of Golden, CO, a leading developer of thin-film batteries.

In a battery, the electrolyte allows positive ions to move from one electrode to the other, while forcing electrons to travel through an external circuit, providing power. Bradow’s company and a handful of others are using a solid glassy electrolyte, which they deposit as one of a series of flat layers that make up the battery.

In addition to being safer, this solid material allows developers to use electrodes of pure lithium metal, which has the potential to significantly increase storage capacity. The batteries can survive extremes of cold and heat, which means, for example, they could be built into rubber tires to power air pressure sensors, says John Bates, chief technical officer at Oak Ridge Micro-Energy in Tennessee.

Thin-film cells also can be stored for decades and retain almost all their charge, developers say–and deliver a powerful burst of energy when finally needed. And, in many applications, they can be actively used for decades, since they can be charged and discharged tens of thousands of times.

These characteristics make thin-film batteries ideal for some new technologies. Remote sensors that scavenge tiny amounts of energy from vibrations, radio transmissions, or light, require batteries that can store this micro-supply of energy without leaking it away over time. And remote sensors need the high-power bursts many of these cells can deliver, to send data via radio signals to a central station.

The ability to power radio transmission is also important for future medical implants that will deliver drugs or measure glucose levels. And these applications will also benefit from the batteries’ long lifetimes; they can be recharged and discharged over many years, eliminating the need for surgery to replace them. “It’s the perfect kind of battery for powering any RF device, because it’s pulse power–instant-on and then it goes into sleep mode,” says Bradow. “That’s what our battery loves and other batteries hate.” His company plans to start mass-producing its batteries next year.

4 comments. Share your thoughts »

Credit: Infinite Power Solutions

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me