Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers have come up with a new technique for magnetic resonance imaging (MRI) that’s much cheaper and more portable than current technology. Although it’s not feasible for many traditional medical applications, the device could be useful, they say, in the fields of biotechnology, geology, and industry, where high-power magnets are too expensive or samples contain magnetic properties that interfere with high magnetic fields.

MRI scanners create images of the inner structures of living tissues, the flow of fluids through pipes, or the structure of objects such as rocks and fossils. The main drawback of MRI is that it requires powerful magnetic fields generated by superconductive magnets to produce detectable signals, which makes it an expensive and unwieldy technology.

A new and radically different MRI device, developed in the labs of Alexander Pines and Dmitry Budker at the University of California, Berkeley, could solve those problems. It relies on low-power magnets and costs only a few thousand dollars. The team eventually hopes to minimize the current setup and thereby create a handheld, battery-powered device that can be used anywhere.

“Both this group and other people are looking around and saying, let’s forget about the typical way we do magnetic resonance,” says Andrew Webb, an MRI specialist at Penn State University. This approach offers “a completely different way of detecting this MRI signal,” he says.

In traditional MRI scanners, a strong, uniform magnetic field forces some of the hydrogen atoms inside a patient or sample to “spin” in the same direction. A radio-frequency pulse then makes the aligned hydrogen atoms shift direction and enter a high-energy state. When the pulse ends, these atoms gradually realign while giving off energy. A magnetic coil in the MRI machine can detect this energy, which is used to create the image.

The new device, called an optical atomic magnetometer, is designed to image fluids like gasses and water. The sample material is first polarized with a magnet. Then it’s exposed to a varying magnetic field, in which each atom in the sample receives a different level of magnetism, giving it a different spin.

The sample then moves into a detection chamber. Unlike traditional MRI, though, where the structural information is detected using a magnetic coil, Budker’s lab developed a way to detect the MRI signal using light. A glass cell near the chamber is filled with rubidium atoms, which are highly sensitive to changes in magnetic fields and can detect magnetic signals from the sample. When a laser light probes the rubidium atoms, they change the polarization of the laser light according to the strength of magnetic fields they sense. The signals can then be reconstructed into an image. (A description of the device and preliminary results were published last month in the Proceedings of the National Academy of Sciences.)

0 comments about this story. Start the discussion »

Tagged: Computing, Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me