Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Half of all cancer patients in the United States require radiation to combat their tumors. A form of radiation that uses protons, rather than X rays, to zap tumors causes fewer side effects to healthy tissue and may prove more effective.

Although these benefits of proton therapy have been known since the 1960s, it has yet to come into wide use. A key drawback: cost. Only a handful of hospitals can afford the equipment required to create high-energy proton beams.

Now a startup based in Littleton, MA, Still River Systems, is working with MIT physicists to develop a smaller, less expensive proton accelerator in the hopes of making the therapy more widely available. It expects the machine, which relies on advances in magnet technology to energize protons enough so they are therapeutic, to be in hospital trials in 2008.

During traditional radiation therapy, a clinician aims X-ray beams at a patient’s tumor. The X rays damage DNA and other molecules in the cancer cells–and in healthy cells–in the beam’s path. Proton beams can be focused far more sharply. “You can more precisely shape the [proton] dose to the shape and thickness of the tumor,” says Timothy Antaya, a technical supervisor at MIT’s Plasma Science and Fusion Center, who is working with Still River Systems. As a result, less surrounding healthy tissue is damaged during proton therapy.

But giving protons high enough energy to penetrate through the body to a tumor usually requires a large, expensive accelerator that must be housed in a different room than the patient. In order to penetrate 20 centimeters of water (the gold standard for these treatments), accelerators must rev up protons to 250 million electron volts. The equipment needed to generate such high-energy proton beams costs $100-200 million. Furthermore, in staffing, Antaya says, “For protons you need something like a small nuclear physics laboratory.”

Antaya says the machine from Still River Systems will be small enough to fit into the same room as the patient. “We’re taking advantage of advanced magnet technology,” he says. The company is using an accelerator known as a synchrocyclotron. Antaya says the new machines will be an order of magnitude smaller and an order of magnitude less expensive than current ones. And he says one of the group’s goals is to give the system a simple interface so that it doesn’t require a large, highly-trained staff.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me