Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

When it comes to hybrid vehicles, electronics and batteries tend to get the most attention. But it is elegant mechanical engineering that established Toyota as the market leader in hybrids. Now General Motors, DaimlerChrysler, and BMW are applying mechanical engineering to catch up. The three manufacturers have joined forces to develop transmission technology that could beat Toyota’s system–at least on the highway.

Toyota’s patents for their hybrid vehicle focus on the control systems and sophisticated transmission used to shift and share power among the engine, electric motors, and wheels. “There’s a lot of mechanics in the system,” says David Hermance, executive engineer for environmental engineering at Toyota’s Gardena, CA, Technical Center. “Even if you make significant improvements on the electrical side, if you don’t do a good job on the mechanical side you don’t get as much efficiency, and you’re looking to improve efficiency every place you can.”

The first hybrids from GM and DaimlerChrysler were so-called “light hybrids” providing a relatively small efficiency boost. (BMW has yet to release a hybrid.)

Toyota’s hybrid system is notably different because of its power-splitting transmission. To date, competitors such as Honda have integrated electric power by adding motors to more-conventional transmissions. As a result, a hybrid’s engine must be operating for the vehicle to move. In contrast, Toyota’s transmission enables hybrids such as the Prius sedan and the Highlander SUV to start in all-electric mode, leaving the engine off during the low-speed, high-torque regime where mechanical power from the engine is least efficient. The engine comes on only when the driver requests more power than the electric motors can provide or to recharge the vehicle’s battery.

Toyota’s transmission also employs its electric-vehicle (EV) mode to drive its hybrids in reverse, so there’s no need to build in dedicated reverse gears found in conventional transmissions.

Some 500 engineers at GM, DaimlerChrysler, and BMW are developing a new transmission system that delivers EV-mode operation just like Toyota. The transmission will add one more trick: the system can also take the electric side of the drivetrain out of the loop and run in engine-only mode. Their two-mode hybrid transmission, patented in 1999 by GM and currently used in its hybrid buses, swaps out the motors with a set of fixed gears, locking the engine to the driveshaft. The electric motors help make the switch seamless by synchronizing the speed of the two sets of gears, but once the shift is done the motors are out of the picture. “The motors do all the fine-tuning and the clutches just cog over. That’s the big revolution with the two-mode,” says Tim Grewe, GM’s chief engineer for the two-mode hybrid power train.

8 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me