Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A growing effort is underway among researchers to find a way to make spintronics, the manipulation of electrons’ “spin” to do computing, practical. The promise is clear: spintronics could lead to computers that turn on instantly and electronics that use far less battery power, and also overcome the looming limits to Moore’s Law. But the challenges to using spintronics for logic operations are also daunting. Not the least among them is finding the right material to build practical circuits. For several years researchers have been studying semiconductors such as gallium arsenide, doped with elements such as manganese to make them magnetic. But those work only in temperatures below about minus 120°C–hardly an option for everyday computers.

MIT research scientist Jagadeesh Moodera and his team have developed a material that works at room temperature and is easy to create. The material is indium oxide, which is similar to the material used to conduct charge in an ATM’s touch screen, with a small amount of chromium added to make it magnetic. Other materials that might work, Moodera says, include zinc oxide, widely used in sunscreen, and titanium oxide. The magnetic semiconductor would polarize the spin of the electrons, which then flow into the silicon chip where circuits would use them to perform calculations, while a detector, probably made of the same material as the spin injector, would read them as they flow out.

The material needs more development before it can be tested in an actual circuit. But Don Heiman, a professor of physics at Northeastern University, calls the creation of a magnetic semiconductor that works at room temperature “a pretty big breakthrough.”

Indeed, Moodera says, there are several years’ worth of work to be done to build a practical computer chip based on spintronics. For instance, it’s not clear how the silicon and the indium oxide interact at the point where they touch. It’s very difficult to control the shape of the material at that interface, which is about two atomic layers thick, and it’s possible that differences between the two materials can cause the electron spins to lose their polarization. It will take a fair amount of basic research just to understand what happens at the interface, Moodera says, and more work to learn how to control it. And once they’ve built a working spin injector, researchers will still have to design a spin detector and the transistor.

Spin-based circuits are intriguing because they add a new dimension to computing. While electronic computing is based on the negative charge of the electron, rapidly switching current on and off to make the 1s and 0s of the digital world, spintronics relies on scientists’ growing ability to manipulate another quantum mechanical property of the electron–a property known as spin. That’s important to a computer chip industry that is looking to a time when it will not be able to make circuits any smaller. Current computer chips employ silicon transistors inscribed with lines less than 100 nanometers thick. Chipmakers continue to shrink the size of transistors in order to cram more of them onto a chip, but once they get down to a few nanometers in size, they will begin to leak electrons. Moodera and others hope that spintronics will allow them to do more computing with the same number of transistors.

1 comment. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me