Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

With much of the easy-to-pump oil already extracted from U.S. oilfields, companies are increasingly going after the oil that remains stuck to the rocks in reservoirs. They typically inject steam or carbon dioxide into the reservoirs to thin the sticky oil so that it flows more easily. Researchers at Queens University in Ontario, Canada, have now found that a novel soaplike compound could make the process more productive.

The compound is a type of surfactant – a class of compounds that allow substances such as oil and water, which otherwise do not blend well, to form mixtures. Surfactants, which are used in materials such as detergents and paint, are widely known to increase oil production – by as much as 28 percent when pumped into reservoirs together with water, according to the U.S. Department of Energy. But they also pose a problem: once the oil-water emulsion is extracted from the reservoir, the oil needs to be separated. That’s complicated and expensive.

The biggest problem, says Eric Beckman, a professor of chemical and petroleum engineering at the University of Pittsburgh, is that the surfactant holding the oil and water together has to be deactivated. Currently, oil-water emulsions are broken using other chemicals or heat. “It would be much easier to simply turn the surfactant off,” he says, “so the emulsion simply falls apart and you can recover and reuse the surfactant if you want.”

This is exactly what Philip Jessop, associate professor of chemistry at Queens, made possible with the help of collaborators at Georgia Tech. They found a surfactant that they say can be switched on and off using carbon dioxide and air. Some companies have already expressed interest in the work, Jessop says. The researchers describe the novel properties of the surfactant, a type of amidine, in this week’s issue of Science.

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me