Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A growing number of researchers are looking to nanotechnology to find ways of delivering drugs directly to cancer cells or creating fast, inexpensive diagnostic tools – such as over-the-counter tests for avian flu. But the expertise in materials science needed to create such nano devices often doesn’t overlap with an in-depth knowledge of biology, which could help guide researchers toward materials likely to be safe and effective.

Now Accelrys, a San Diego-based company with experience developing modeling software used for designing drugs and materials, is building software that will bring together life science and materials science expertise into one system. The goal: bridging the gap between these two fields, and thereby saving researchers time and money by quickly identifying designs that will work in the body.

For example, the software would help researchers sort through many combinations of drugs and polymers, to predict which ones will be compatible with each other and which can be made into nanoparticles that safely deliver the drug to target tissues, such a cancer tumor.

Similarly, using the software to match materials with protein-detecting molecules could help in designing diagnostic nanoparticles that latch onto molecular biomarkers in the body and reveal their location with various imaging technologies, according to Leroy Hood, a biochemist, founder of Seattle’s Institute for Systems Biology, and scientific advisor for the software project.

One example of a problem the modeling might solve, says Hood, is measuring multiple biomarkers in order to monitor the effects of disease treatments. He says that models, by quickly sorting through a large number of possible materials and detector molecules, might help researchers “go beyond just our intuitive feeling about these things” and discover more possibilities.

Accelrys will build on existing modeling software that allows researcher to predict, for example, the physical properties of new materials, or how drugs will connect to target molecules. An important early project is predicting how molecules will interact with surfaces such as a cell membrane or a polymer, or even a carbon nanotube. This effort will attempt to answer several questions: How does a single molecule stick to a surface? What happens when you add more molecules or different types of molecules? Or, given several different possible materials, which will show the strongest binding for a drug?

Modeling software already plays an important part in nanotechnology. James Baker, director of biologic nanotechnology at the University of Michigan, whose nanoparticle-based cancer imaging and treatment technology is now in animal tests, was able to use modeling early in the design process to reveal how a version of the particles he used damaged the cell membrane. Knowing the mechanism allowed him to design a safer version.

“Being an immunologist and an allergist, I knew a lot about toxicology of drugs and adverse reactions to materials,” he says. “So very early on we looked at those parameters in the materials side of what we were doing. That was sort of a unique thing that allowed us to move quickly into animals and get success – we were aware of some of the toxicological barriers that we’d have to address.”

0 comments about this story. Start the discussion »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me