Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

As more and more functions are crammed into cell phones and other portable electronic devices, the capacity of their batteries is being sorely tested. To meet this challenge, Finnish handset manufacturer Nokia is turning to a novel approach in chip design that could slash the energy consumption of chips tenfold.

The technique involves the operation of chip transistors at voltage levels below the thresholds they normally need to switch on and off. In effect, this permits idle transistors or those performing low-performance functions to be placed in a kind of standby mode.

“In computer design, power consumption is getting to be a major driving force,” says Jamey Hicks, director of the Nokia Research Center in Cambridge, MA. This is particularly the case with mobile or embedded devices, he says: “The limit on the size of the device gives us a limit on the total energy budget.”

To tackle the problem, Nokia researchers have teamed up Anantha Chandrakasan, director of MIT’s Microsystems Technology Laboratories, to develop low-powered devices that use subthreshold transistors. Transistors normally act like switches – they’re the fundamental components of the digital logic gates that make up silicon chips. By switching on and off, they’re able to hold a state of 1 or 0. By using operating voltages below the normal “on” threshold, transistors can still behave like switches, but their behavior is less stable, says Chandrakasan. Below the threshold, any slight variation in the input voltage can produce massive changes in the output voltage. So the challenge in developing subthreshold transistors lies in ensuring that the input voltages are consistent enough not to produce these swings.

MIT’s Chandrakasan discovered that by selectively reducing the voltages of transistors it is possible to reduce the energy consumption by between five and ten times per operation. There is a trade off, though: “The speed of the circuit reduces,” he says. “It can be a thousand times slower.”

Chandrakasan and Nokia are working on creating a video compression chip that uses this technique to save power. Digital cameras are a standard feature of modern cell phones – but consumers often don’t realize that they come at a price. “They are pretty power hungry,” says Hicks. By developing image compression chips that can consume less power, they hope to make these camera features less of a drain on a cell phone’s overall performance. “Customers all want a long battery life and more features,” says Hicks. Even bearing in mind that the display, backlight, and phone features will still consume normal amounts of power, he predicts that such a chip could double a cell phone’s battery life.

2 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me