Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Back in graduate school, Christina Galitsky could boil her life’s work down into something like the title of a journal article: “The reversibility of proteins absorbing onto a surface,” she says. But since she dropped off the PhD track and, later, took a job up the hill at Lawrence Berkeley National Laboratory, the question “What do you do?” has turned into a stumper. “I guess now I say, I try and work on … sort of innovative solutions to … wait, what do I say?” she says with a laugh.

Officially, Galitsky spends about two-thirds of her time developing tools to help companies diagnose energy inefficiencies and find new technologies that conserve power without sabotaging profits. But a glance around her office suggests that a host of other problems occupy her mind. On the floor lies an aluminum contraption, an efficient cookstove designed to fight deforestation in the poor world; she and her colleagues believe it might also keep refugee women in Darfur, Sudan, closer to their camps and out of the path of sexual assault (see “Christina Galitsky on her work with refugees). Later, she’ll don a rust-stained lab coat and check on her students, who are testing a low-cost scheme to filter arsenic from the drinking water in Bangladesh.

“I’m involved in a crazy range of things,” she admits. “But it would be hard to work on one thing all day long, five days a week.”

When Galitsky left the chemical-engineering program at the University of California, Berkeley, with a master’s in 1999, she found work testing the quality of California’s surface waters. Quickly, she recognized that much of the contamination she encountered came from energy-related sources, such as the power industry. Eager to fight pollution rather than just measure it, she joined Berkeley Lab in 2001. There, she began diagnosing energy waste in nearly a dozen industries, from concrete to beer.

A couple of years later, when the California Energy Commission put up seed money for research into energy efficiency, she got more ambitious. Technologies such as occupant-sensing ventilation systems can help businesses conserve energy, and they often pay for themselves in just two or three years. But traditionally, business owners have had to discover those technologies and determine the costs and benefits by themselves–a huge barrier to adoption. Galitsky and her colleagues decided to test a new approach with California’s wineries, offering them a system that would make it painless to spot their energy waste and find cost-effective ways to do better. (The wine industry requires huge amounts of power: 400 gigawatt-hours–enough to power nearly 60,000 homes each year in California alone, and most of that during the summer and fall, when conservation matters most.)

Galitsky and her colleagues partnered with Fetzer, a large California winery, and started collecting data. It was tricky. In some industries, managers put power meters all over their plants, so they know how much energy each step of the manufacturing process demands. Wineries, however, tend to install just one meter for the whole operation. So Galitsky tallied everything from the number of grapes crushed to the sizes of Fetzer’s refrigeration tanks and pieced the data into rough estimates of the power used at each stage of the winemaking process. Then she and her team surveyed wineries around the globe to identify the most energy-efficient technologies employed at each stage. The result is a tool called BEST-Winery, based on Microsoft Excel. It poses a series of questions, then spits out a score that compares the winery under review with a hypothetical winery of the same size and scale that uses the industry’s best conservation technologies.

Other systems for measuring energy efficiency stop there. But BEST-Winery suggests more than 100 conservation technologies and runs a cost-benefit analysis for each one–a significant innovation for this kind of tool. Winery owners can mix and match different technologies and find comprehensive approaches that fit their budgets.

The state of California presented an award for energy innovation to Fetzer and to Galitsky’s team, which is readying a European version of the software. But wineries are only the beginning. Galitsky thinks a similar tool could work for a wide range of businesses. Soon the Berkeley team will test that theory at the national level, working with the six countries of the Asia-Pacific Partnership on Clean Development and Climate. These countries want to measure the environmental footprints of their cement, aluminum, iron, and steel industries; instead of evaluating a single plant, the software would grade entire countries.

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me