Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The technology might also be useful for extremely compact devices, since it would be possible to layer memory, logic, and even sensing circuitry on top of each other, rather than side by side or on separate chips. The nanowires are applied to chips and connected to the source, drain, and gate using room-temperature processes, allowing consecutive layers to be applied without damaging previous layers. “If you can put ultra-high-performance materials into 3-D structures, through layer by layer assembly, it allows you to put a lot more stuff into an area,” says Lieber. The proximity of the layers, a mere 100 nanometers apart, could also speed performance, he says.

One of the qualities that distinguishes this current work from earlier nanoscale electronics research, including his own, Lieber says, is that the measurements used are industry standards, which makes it possible to compare how nanowires would perform in real devices.

The key to the improved performance is a “core-shell” structure of the nanowires, which confines electrons, or their counterparts, electron holes, in a small space. That allows electrons to zip through the wires quickly, which is key to the speed improvements. In a recent paper in the journal Nature, Lieber made nanowires with a germanium center surrounded by a thin coating of crystalline silicon. And in work described in Nano Letters, the researchers showed the versatility of nanowires by using gallium nitride, which could be useful for high-power, high-temperature applications.

“These two papers come up with very interesting ideas for using this core-shell structure to enhance the performance of these transistors and basically make them much more robust and reliable,” says Berkeley’s Yang. With nanowires, he says, “you get very small features and different compositions, and you also have access to all these nonconventional heterostructures, like these core-shell structures, that enable you to engineer the electronic structure. These are not things you can do easily with conventional technology.”

2 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me