Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Approximately 200,000 people in the United States get pacemakers every year – but having a battery-operated machine control the heart is far from optimum, especially for children, because it requires repeat operations.

According to new findings, muscle cells from a patient’s own tissue could one day be used to treat some heart problems. Scientists at Children’s Hospital Boston have devised a way to grow skeletal muscle cells that, when implanted into the hearts of rats, transmit the heart’s vital electrical signals. The therapy could eventually help people with abnormal heart rhythms.

When the heart beats, electrical pulses are first generated at the top of the heart and propagate through the muscle, causing the upper chambers of the heart to contract. The signal then reaches a small piece of tissue, called the atrioventricular (AV) node, and slows for a split second, allowing the lower chambers, or ventricles, of the heart to fill with blood. The signal is then propagated to the ventricles, allowing them to contract.

Unfortunately, the function of the AV node sometimes goes awry. In patients with a condition known as complete heart block, which can be triggered by one of several factors: heart disease, a developmental defect, or injury during surgery, the AV node is damaged enough that the electrical signal is not transmitted from the upper to lower chambers, and the heart fails to function properly.

Pacemakers implanted into the heart can often fix the problem – they sense the electrical signal in the heart’s upper chamber and then stimulate the lower chamber to contract. But in children, pacemakers have certain drawbacks. The child can quickly outgrow the device and the batteries must be replaced every three to five years, requiring repeat surgeries. “We wanted to try to create a [cellular] electrical bridge for children with AV node problems,” says Douglas Cowen, a cell biologist at Children’s Hospital who led the new study.

“One of the major benefits of a biological alternative to a pacemaker is that it would grow with the child,” says David Lathrop, leader of the arrhythmias research group at the National Heart Lung and Blood Institute, a division of the National Institutes of Health in Bethesda, MD.

Other groups are also developing biological alternatives to pacemakers. But Cowen’s technique may offer advantages because it directly transmits the heart’s own electrical signals, rather than generating a new electrical signal, as a pacemaker does. “The approach Cowen takes more closely resembles the normal conduction pathway of the heart,” says Lathrop. “It’s too early to say which is better at this point.” He adds that both techniques need further development and are years away from clinical testing.

0 comments about this story. Start the discussion »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »