Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A reconfigurable chip developed by ChaoLogix in Gainesville, FL, makes it possible to morph a circuit from one type into another in an instant. Having the ability to effectively redesign chips an unlimited number of times after they’ve been manufactured could make chips faster and more robust. And, ultimately, it could bring down the cost of producing integrated circuits, by reducing the need to make expensive, custom-built chips.

The novel chips work by exploiting inherent “chaotic” behavior within the integrated circuits, enabling a single, simple circuit to behave like any kind of logic gate. Such a chip could be transformed, for example, from a graphics card into a memory chip and back again – in just two computer clock cycles. “We have blurred the line between software and hardware,” says William Ditto, chief technology officer of ChaoLogix, which was spun out of research at the University of Florida.

In many respects, the concept is similar to the development of software-defined radios [SDRs], says Ditto. These are devices that use a combination of custom-built integrated circuits and existing reconfigurable chips to provide a flexible mix of hardware and software, to make wireless devices that can adapt to operating at different radio frequencies and standards. But whereas SDRs can make only radio devices and consist of several chips designed to perform wireless functions, ChaoLogix’s chips could, in theory, replace all of these chips in a single device.

Existing reconfigurable chips, called field programmable gate arrays (FPGAs), contain programmable interconnects that can be rewired to perform different functions. But FPGAs are relatively slow to reconfigure, typically taking milliseconds for each rewiring, or about one million times slower than ChaoLogix’s chips.

Because of this limitation, FPGAs tend to be reconfigured only once to form a single permanent circuit, usually as relatively cheap alternatives to building dedicated chips. “Making a dedicated chip is very expensive,” says Allan Cantle, CEO of Nallatech, in Glasgow, Scotland, which develops software for FPGAs. “You can easily spend tens of millions of dollars just making your first working chip.”

Rather than using programmable interconnects, ChaoLogix’s approach is to use fixed circuits and instead exploit their inherent “noise” or chaos to make them produce different outputs without changing them. Normally, the circuits on a chip consist of arrangements of transistors designed to behave like a specific type of digital logic gate, such as a NAND and NOR gate. But if the inputs voltages to these circuits fall below certain thresholds, their behaviors become chaotic, producing undesirable outputs.

ChaoLogix’s trick is to put these chaotic states to use. They’ve designed a logic gate circuit that’s capable of behaving like any kind of logic gate – if the input voltages are just right.

The common notion that chaotic systems are unstable and unpredictable is not accurate, says Ditto. Such systems can be extremely sensitive to changes, and it is possible to produce desired states reliably and reproducibly provided you ensure only minor changes are made to the inputs.

“Just making small changes to the input, you can adapt [a circuit] to do totally different things,” says Celso Grebogi, professor of nonlinear and chaotic systems at University of Aberdeen in Scotland. This creates a greater degree of flexibility, because it makes more states available in a given system, he says. Because of this, Grebogi sees engineers increasingly turning toward chaos to get more out of their hardware.

12 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me