Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

High-temperature fuel cells promise clean, efficient energy in quantities large enough to power cities. But, so far, they’ve been too expensive for widespread use. One major problem is the sulfur in fossil fuels, such as coal, oil, and natural gas, which contaminates the hydrogen gas that runs the cells. The sulfur attacks and degrades a part of the fuel cell called the anode, reducing power production – and eventually shutting down the cell.

Now chemical engineers at Tufts University in Medford MA, led by Maria Flytzani-Stephanopoulos, have found a way to continuously remove sulfur from incoming hydrogen before it feeds these cells. The work, published in the June 9 issue of Science (abstract), could be a significant step in making high-temperature fuel cells practical.

[For images of this new fuel-cell technology, click here.]

Low-temperature fuel cells have already found uses in laptops and buses, for example. But these fuel cells produce relatively little power. In contrast, high-temperature solid oxide fuel cells (SOFCs) could generate enough power to supply cities. And their heat can be channeled into other uses: for heating buildings or turning steam turbines to produce more power.

Lanny Schmidt, professor of chemical engineering and materials science at the University of Minnesota, says many operational issues have kept more powerful fuel cells off the market, including long startup times and parts wearing out under high heat. But, he says, sulfur is “one of the major problems.” Schmidt predicts that researchers will overcome these obstacles in the next few years, and, if successful, SOFCs “may become the fuel cell of choice.” He says that Flytzani-Stephanopoulos has “an innovative, clever new way to remove sulfur.”

For low-temperature fuel cells (such as proton-exchange membranes), engineers have addressed the sulfur problem using a series of processing steps. They remove most of the sulfur from fossil fuels by refining the liquid fuel, and then use a reformer and materials called “sorbents.” In the reformer, the fossil fuel is heated with air and water to make a hydrogen-rich gas. The sorbents then soak up hydrogen sulfide, so that the gas reaching the fuel cell is sulfur-free. But common sorbents, such as zinc oxide, would degrade in high-temperature fuel cells, which operate at 600 to 1,000 degrees Celsius.

1 comment. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me