Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Saraf has demonstrated the sensor on a glass backing, but he says the film could also be made on flexible polymer sheets. Such flexibility would be necessary to wrap the sensor around a robot’s “finger” or the tube of an endoscope (a camera inserted through a small cut that allows surgeons to operate inside the body). Saraf says such an endoscope could take concurrent visual and tactile images, helping surgeons “feel” which tissues the scope is up against.

Srinivasan says an ideal sensor “essentially has to be what skin is: flexible, with the ability to sense dynamically and with high spatial resolution, and physically robust – it shouldn’t break, it shouldn’t wear out.” Human skin obtains highly sensitive tactile readings by having sensors with different strengths. Some cells are good at sensing vibration or movement over time (which is essential for feeling something slipping from your grip); other cells accurately sense a point of pressure smaller than a micrometer.

High touch sensitivity “is extremely important” for robotics, says Robert Platt, a robotics engineer at the NASA-Johnson Space Center who works on the hands for Robonaut, a humanoid robot. To perform the most basic human tasks – dexterous grasping, walking on two legs, climbing, even crawling – robots “need to be cognizant of and controlling the forces they’re applying,” he says. To pick up a glass of water, for example, a robot needs to dynamically sense the forces exerted by its “hand.” Such a task requires high sensitivity – not only being able to feel where on its fingers a stress has been applied, but also in what direction that force is moving. This information can inform the robot whether an object is slipping or not, for example.

The high spatial sensitivity of Saraf’s sensor would not be enough to help a robot hold a glass of water, though, because the sensor can’t tell the direction of pressure. Further research will reveal whether or not nanoparticle layers can sense this kind of tactile information, Saraf says. For now, though, it is “a promising approach,” says NASA’s Platt.

3 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me