Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Fast, high-quality infrared devices are expensive. That’s why they’ve been used mainly in applications such as space imaging and night vision for military helicopter pilots. But now MIT researchers are developing a method for making high-quality infrared devices for one-tenth of the cost, which could eventually lead to widespread use in civilian applications, such as cancer detection and night-vision displays in vehicles.

Relatively low-cost infrared devices are already available to consumers, but these devices are unreliable and tend to produce noisy, low-resolution images that refresh slowly, says Anu Agarwal, a research associate at MIT who manages the infrared project at the institute’s Microphotonics Center. High-end devices produce sharp images and video in real time, but need to be cooled with liquid nitrogen, she says, and they’re made with expensive materials and specialized tools.

The new method, which works at room temperature, uses materials that are much less expensive for converting infrared light into electrical signals for displays. Also, the detector can be made with tools similar to those used to make the electronics in the device, eliminating the need for specialized, costly equipment. Indeed, the sensor can be fabricated directly on silicon along with the electronics that read out the signal, which makes it possible to pack more pixels into a given area, increasing resolution, Agarwal says.

As a further benefit, each pixel can sense three or four specific wavelengths of light in either the visible or infrared range. With conventional technology, sensing multiple wavelengths requires using a pixel for each wavelength. Using one pixel for all the colors allows for significantly better resolution, Agarwal says.

Right now, the researchers are focusing on the development of devices that sense light at very specific frequencies. Within each pixel, multiple detector materials are also tuned to respond to specific wavelengths. Using specific wavelengths makes it possible to pinpoint, for example, the temperature of objects or certain substances. Cancerous tumors emit specific infrared wavelengths, for instance, and a detector set to a narrow frequency should be able to identify these against the background of the body’s heat, says George Kenney, associate director of the Microphotonics Center. Eventually, this feature could be used by firefighters who need to see light at the wavelengths emitted by a human body, without being distracted by light from fire or other sources, making rescue operations easier.

12 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me