Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Titanium is as strong as steel, but weighs only about 60 percent as much. It’s also highly resistant to corrosion, and handles temperature extremes well. So, not surprisingly, the aerospace industry wants to use much more of it in the next generation of planes, making them lighter and reducing fuel costs.

But there’s a hitch: at around $40 per pound today, titanium is expensive – and the price keeps going up.

Now a startup, Avanti Metal, using technology developed at MIT, hopes to commercialize a process that drastically reduces the cost of producing titanium, making more of it available for large, lighter-weight airplanes. The process, developed by MIT chemist Donald Sadoway, applies an environmentally benign, direct electrolysis method to make the metal.

Titanium is naturally abundant. But processing titanium oxide found in the ground to make a usable metal is slow and produces toxic waste. “The price of titanium has gone through the roof,” says Corby Anderson, director of the Center for Advanced Mineral and Metallurgical Processing at the University of Montana. “It’s double what it was this time last year – and last year it was pretty high.”

Jeffrey Sabados, president of the four-person Avanti, estimates that, based on production plans published by Boeing and Airbus, there’ll be a 30,000-ton shortage of titanium by 2010. He claims that Avanti’s process for refining titanium could slash costs to about $3 per pound. Then, if the metal then sells for even $25 per pound, an estimate he calls conservative, it’s a huge potential profit.

Since the early 1950s, titanium has been produced through the Kroll process. Manufacturers first make titanium chloride, which gets processed into titanium tetrachloride, and then mixed with magnesium, which draws out the titanium and produces chlorine gas. The result is a porous material, contaminated with magnesium salts, which requires further processing to remove the salts and make it usable for manufacturing. The process is so toxic that it’s difficult to get the permits needed to build a new plant in order to expand production.

Sadoway says their process is much greener. They mix titanium oxide with other oxides, such as magnesium oxide or calcium oxide; then they heat the mixture to about 1,700 degrees Celsius. This produces a bath of molten oxides, through which an electric current can be run. The electricity produces electrolysis, breaking the bond between the titanium and oxygen atoms, and the heavier titanium sinks. The result is a pool of liquid titanium at the bottom and oxygen bubbling out the top. The other molten oxides remain in place, acting as the electrolyte when more titanium oxide is added. “You just keep making more and more and more metal,” Sadoway says.

13 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me