Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Amid increasing competition from Advanced Micro Devices (AMD), Intel is changing its chip-making philosophy: it’s paying more attention to the power requirements of its microprocessors.

In July 2006, the chip-making giant will release a new microprocessor, called Core 2 Duo, designed for laptops and desktops. The new chip is based on Intel’s current chip architecture, which replaced traditional single-core processing with two processing centers on a single chip. The company says that the Core 2 Duo will perform better than its current dual-core chip, and will be more energy-efficient, which could make laptop batteries last longer and desktop towers run cooler.

Paying attention to power consumption in microprocessors is a relatively new concept for the company, says Steve Pawlowski, a senior fellow at Intel, adding that the move may help Intel regain market share from its rival AMD. Historically, the most important metric in the industry has been processor performance – the speed at which a processor can complete a task, such as calculating a spreadsheet. “We’ve always focused on performance at the expense of power [use],” Pawlowski says.

But basic changes have occurred in the PC market, which first led AMD, and now Intel, to rethink microprocessor designs. First, mobile devices have become the primary PC for many consumers – who don’t want a device that quickly drains a battery or gets too hot. Furthermore, as the size of transistors shrink, they’re more likely to waste electricity through a physical process called “leakage,” says Kevin McGrath, an AMD fellow – and the more transistors on a chip, the more electricity is wasted.

AMD has been working on more-efficient microprocessors for several years, and now Intel is trying to level the playing field. Both Intel and AMD have tackled part of the problem by converting their chip line-ups to dual-core processors (see “Multicore Mania,” December 2005), which turns out to be one way to increase efficiency. “Interestingly, going to multiple cores can be a very power-efficient way of computation,” says Milo Martin, professor in the computer and information sciences department at the University of Pennsylvania.

Three aspects of multicore chips make them more efficient. First, when a chip has more than one core, the speed at which each core computes can be slowed down without impeding the speed of the entire chip. By slowing down the clock speed, explains Martin, engineers can decrease the computational rate of a single core by a factor of five, from one gigahertz to 200 megahertz, and the core consumes only one-30th of the power. Then, he says, even if five of those cores are assembled onto a single chip, only one-sixth of the power is consumed, yet the total computational rate of one gigahertz is maintained.

1 comment. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me