Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

An ultrasensitive DNA and protein detector, expected to be widely available later this year, could save lives by detecting genetic and infectious diseases early, before they turn deadly or spread. Its relatively low cost and simplicity will make diagnostic tests that today can be done only in specialized labs available at local hospitals. Furthermore, because it’s extremely sensitive, it could detect signs of disease invisible to current tools.

The device, which has been developed by Nanosphere, Northbrook, IL, based on research by Chad Mirkin, professor of chemistry at Northwestern University, is already being in used in several research labs and is awaiting Food and Drug Administration approval before it enters general use.

[Click here for illustrations of the process used by the Nanosphere protein and DNA detector.]

In its first application, the gold nanoparticle-based detector will tell doctors whether patients have a genetic trait that makes them likely to develop blood clots during surgery, helping doctors prevent strokes. Soon after, pending the results of ongoing clinical trials, it could diagnose previously undetected heart disease and help researchers diagnose and develop treatments for Alzheimer’s disease by detecting levels of telltale proteins in the blood at concentrations “undetectable by any other technology,” says Bill Moffitt, CEO of Nanosphere.

Each year 100,000 patients complaining of heart attack-like symptoms are sent home without treatment because current methods cannot diagnose some heart attacks, Moffitt says. Of these people, 20 percent die within a month, he says. And the rest have a much greater risk of dying from a heart attack in the coming year. Moffitt says that by detecting concentrations a thousand times lower that current methods of a protein released in the body during a heart attack, the Nanosphere technology may help doctors diagnose and treat these attacks.

Moffitt says the technology has already been used to detect in a blood sample a protein thought to be associated with early-stage Alzheimer’s in the blood. “If this marker proves out to be indicative of the pathway of Alzheimer’s, then we will have developed a simple blood test for Alzheimer’s,” he says. And, according to him, they should know one way or the other within two years.

Although no treatment exists yet for Alzheimer’s, a definitive diagnosis tool could be used to rule out the disease in people who have symptoms of dementia caused by other factors. Perhaps more importantly, such a diagnostic ability would make it possible to develop and test new drugs for Alzheimer’s, Moffitt says.

0 comments about this story. Start the discussion »

Tagged: Biomedicine, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me