Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Ever since H. G. Wells published The Invisible Man more than a century ago, the prospect of invisibility – or cloaking – has been a mainstay of science fiction. But now physicists say they have finally figured out how to make objects invisible, and what’s more, they are just months away from putting this theory into practice.

The trick is to find a way to guide light and other types of electromagnetic radiation around an object so that it casts no shadow and produces no reflection. Normally, this kind of manipulation would be a tall order, says John Pendry of Imperial College London, England. But, he adds, the recent development of a new class of materials called “metamaterials” makes it tantalizingly feasible.

Metamaterials are engineered materials whose properties are determined by their physical structure rather than their chemistry, says Pendry. Such properties include the ability to bend light, he says.

Now working with David Smith and David Schurig of Duke University, Pendry has formulated a way to design metamaterials that can bend light around an object no matter what direction the light is coming from. “You can apply it to any shape,” says Smith. This means that in theory, anything could be cloaked, he says.

Building on Pendry’s work, which is described in the current issue of Science, Smith and Schurig are developing a proof-of-principle device, with funding from the U.S. Department of Defense’s research arm, the Defense Advanced Research Projects Agency. “It’s fair to say that this year there will be a demonstration on the basic physics of cloaking,” says Schurig.

The cloaking effect depends on a material’s “refractive index,” or its ability to influence the direction of light that passes through it. Light tends to prefer the quickest route between two points, which is normally a straight line. With metamaterials, however, the quickest path can be one that bends around an object.

But bending light is just one of the requirements for cloaking. “You have to return the light to the same path it was pursuing before it hit the cloak; otherwise it casts a shadow,” says Pendry. Similarly, when light enters the cloak, it must not be reflected. “One way to think about it is that this material gives the appearance of being like space,” says Smith, in that space can bend light and also has no reflection.

“It’s a breakthrough,” says George Eleftheriades, an expert in metamaterials at the University of Toronto. However, he says, there is a limitation: “It won’t work for every frequency.”

Indeed current materials are capable of redirecting only microwaves, which means the cloaking device Smith and Schurig are developing will work only against radar or other microwave emitters. While this is likely to prove useful for future stealth planes, we are still at least a decade away from cloaking objects from visible light.

48 comments. Share your thoughts »

Tagged: Computing, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me