Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

TR: How is your approach different from traditional molecular biology techniques?

TG: People have been modifying genetic systems for years. But, for the most part, it’s a trial-and-error approach. They tweak something and see what happens. We wanted to bring a systems level perspective, so we could approach the problem like an engineer. In order to do that, we had to know more about the existing circuitry, so we began to do genetic mapping.

We’ve been focusing on mapping regulatory circuits [a network of genes that control the chemical reactions taking place in the cell]. If you’re trying to figure out the circuitry of a house, you go to the circuit breaker and flip circuits on and off, looking for the circuit that controls the bathroom or the kitchen. We do a similar thing in bacteria, but it’s a bit messier. We stress the bacteria in different ways, with different chemicals or extreme temperatures, and then see how each gene responds. If you do this hundreds of times, you can look for genes that change together. For example, if you see different genes whose expression changes the same way under different conditions, we can infer those genes are related. We can then identify gene regulatory interactions and map the network.

TR: What will you do with this information?

TG: We have hopes of assembling whole genome regulatory models in novel organisms, which could be very powerful. We plan to try it out on electricity-producing organisms, which produce electricity directly from carbon sources.

We will couple the regulatory network with a model of the metabolic network [a map of the cell’s metabolic reactions], which is where the real business of turning carbon into electricity takes place. Then we’ll try to predict what will happen if we tweak genes or nutrients. We will try to decide if and how we could increase the power output or the thermodynamic efficiency of the organism.

Understanding these networks could also help scientists build artificial circuits from scratch. Scientists have already built a number of biological machines, such as toxin detectors or bacterial cameras. That was neat circuit engineering, but most of these devices are built using just three or four component parts. Understanding gene regulators will broaden the list of parts that can be used, because scientists will understand how the parts will impact the cell.

5 comments. Share your thoughts »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me