Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Carbon nanotubes – incredibly strong, electrically conductive, hollow molecules of carbon about a nanometer in diameter – have for more than a decade been prized by materials scientists. They’ve added them to batteries to increase their surface area and are developing light-emitting nanotubes for telecommunications.

Now University of Texas researchers have demonstrated that mats of single-walled carbon nanotubes can communicate electrical signals to neurons, suggesting that the tubes could be used as an electrical interface between neural prosthetics – devices used to replace damaged or missing nerves – and the body. This is good news for those hoping to use nanotubes to stimulate or replace nerve cells in the eye, brain, and spinal cord.

The Texas researchers grew rat neurons on thick mats of carbon nanotubes seeded on flexible plastic sheets. Instead of treating the mats like a foreign surface, neurons take well to the nanotubes, says Todd Pappas, director of sensory and molecular neuroengineering at the University of Texas Medical Branch, who led the research. The nanotubes absorb an important neural protein and form a roughly textured carpet on which nerves grow readily. When Pappas and colleagues at Rice University sent an electrical charge across the sheet, the neurons responded with an electrical signal of their own, called an action potential, indicating that they got the message.

[For images of nanotubes and neurons click here.]

An example of a neural prosthetic in use is the cochlear implant, which uses electrodes that respond to sound and send electrical signals directly into the brains of people with severe hearing loss. Likewise, neuroscientists are developing retinal prosthetics they hope will restore vision in the blind. The electrical interface in neural prosthetics usually consists of metal electrodes or silicon coated with metal, says Pappas.

If they’re proved safe for use in the body, carbon nanotubes may have advantages over traditional electrodes. Long-term implants can cause inflammation and scarring, because the body treats them like foreign material. In addition to carbon nanotubes’ advantages of strength, flexibility, and conductivity, their surfaces can be covered with molecules that look friendly to cells.

Pappas says researchers would like nanotubes to mimic the kind of support neighboring cells offer one another, although they are “not yet sure what cells want.” Scientists might try attaching molecules that encourage growth and stability, for example. “Surface modifiers need to be chosen so that the cell considers the nanotubes part of its natural [environment],” says Nicholas Kotov, an associate professor of chemical engineering at the University of Michigan.

5 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me