Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The new system will add costs “because it offers better cooling and an added fuel consumption lower than its competition,” said Behr CEO Markus Flik in a speech last month in Stuttgart. “R744 is the refrigerant of the future,” boasted Flik, using CO2’s industry code name.

The CO2 in air-conditioning systems is a fluid, compressed to as high as 140 bar – five times higher than the maximum pressure in conventional car air conditioners. The liquid CO2 absorbs and dispenses heat more efficiently than hydrofluorocarbon refrigerants, so the system can be engineered to deliver an equivalent amount of cooling faster and, on average, using less energy.

Of course operating at higher pressure requires tougher, more expensive parts. And it also requires a more sophisticated control system. In fact, Glober says that a CO2-based system under conventional controls can exert substantial torque on the engine when it starts up – enough to stall a small car.

Denis Clodic, director of the Center for Energy and Processes at École des Mines in Paris, points to another cost: establishing servicing networks for the high-pressure systems. “There is a lot of complexity to these systems. That means lots of training,” he says.

Clodic predicts that, at least in 2011, CO2–based systems will appear only in high-end luxury cars, and only in Europe. “We will see some thousands of cars made by Audi, BMW, and Mercedes, to show the European Commission that they really tried to prepare something alternative,” he says. “But there won’t be a mass market for 2011.”

That is, assuming the hydrofluorocarbons from the chemical manufacturers pass muster in long-term testing. DuPont has said that it could take five years to commercialize its new hydrofluorocarbon refrigerant. By that time, companies like Behr may have overcome the remaining challenges with the CO2 systems – identifying affordable CO2 sensors and reducing the cost of high-pressure hoses and compressors. If so, both technologies could enter the market – initiating a classic competition based on performance and price.

11 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me