Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

In the 1990s, air conditioning suppliers switched from the chlorofluorocarbon Freon to an equally troublesome hydrofluorocarbon called R-134a; while easy on the ozone, R-134a is a greenhouse gas that’s 1,300 times more potent than CO2.

The impact has been most acute in automotive applications, where refrigerants often leak out. Indeed, by 2010, such leakage will contribute more than 4 percent of the total climate change impact from motor vehicles. Add in the extra fuel consumption to run the AC, and AC’s share rises to 7 percent.

Little surprise, then, that the European Union decided this January 31 to begin phasing out the use of R-134a in new model cars beginning in 2011, and that regulators in California are preparing to follow suit. Until this spring, the most likely replacement looked to be novel high-pressure systems employing, ironically, CO2 as the refrigerant. Behr GmbH – Europe’s leading AC supplier for cars – announced last month that they would begin selling CO2-based systems ahead of the EU’s 2011 deadline.

But Behr’s competitors, such as Troy, MI-based Delphi and Germany’s Robert Bosch GmbH, have been backing away from CO2 since February, when DuPont and Honeywell unveiled new hydrofluorocarbon refrigerants that may be clean enough to squeak by the regulators. According to the chemical companies, the new kinds of hydrofluorocarbons are no more than 150 more potent as greenhouse gases than CO2 – the limit set by the EU for auto refrigerants after 2011. What’s more, these refrigerants can be dropped into existing AC equipment. “The prospect of having a new drop-in refrigerant that would satisfy the 2011 legislation is incredible – it’s enormous,” says Stefan Glober, director of engineering for Delphi’s thermal and interior division.

Many questions remain for both options, however. The new hydrofluorocarbon-based refrigerants offered by DuPont and Honeywell must complete a host of long-term tests, including for the stability of the compounds under heavy use and for toxicity. That could take at least three years. And it’s unknown how much the new refrigerants will cost to manufacture. This means that AC manufacturers must also continue to develop their new CO2 systems. “These alternatives have appeared relatively late. That’s the dilemma we’re in right now,” says Glober.

The CO2 systems have their own hurdles. One is detecting leaks: cheap, effective CO2 sensors don’t exist yet. “That’s a huge headache,” says Glober. Another is cost. And it’s here that Behr and its competitors part ways. Glober says the industry consensus is that the first CO2 systems will sell for €150-200 more than conventional AC systems, doubling their costs. Behr, in contrast, says it will be able to keep down the added cost to less than €100 in the first-generation system and half that by 2015 – sums that the firm predicts will be justified by higher performance.

11 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me