Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

But using metabolomics as a predictive tool has never been done before, says Rima Kaddurah-Daouk, a research scientist at Duke University in Durham, NC. “We had already determined that metabolic signatures vary with individuals,” she says. But no one had proved that this variation could be used predictively, she says.

Working with researchers in Sweden, France, and at the pharmaceutical company Pfizer, Nicholson’s group analyzed the metabolites in the urine of 65 rats, both before and after they received a lethal dose of acetaminophen. This was done using nuclear magnetic resonance (NMR) spectroscopy, a diagnostic technique that rapidly quantifies the presence of organic compounds by applying powerful magnetic fields to detect the spin in any hydrogen atoms present within these molecules.

The data derived from this technique was then used to create a predictive model based on as many as 1,000 different metabolites. The researchers found that certain metabolic signatures could indeed be used to predict the severity of liver damage caused by the drug.

In the United States, a large proportion of the drugs withdrawn each year by the Food and Drug Administration are removed because of side effects, which often affect only a small proportion of people. Now it may be possible to screen out these few people, so the majority can benefit from the drugs, while at the same time the minority will be protected against negative reactions.

“In many ways this is ground breaking,” says Kaddurah-Daouk. The fact that it captures both environmental and genetic factors makes it highly attractive – and it’s likely to prompt a huge amount of interest from drugs companies, she says.

Others agree. A lot of companies have invested in proteomics and genomics in the belief that they will help to identify biomarkers of disease, says Mike Milburn, chief scientific officer of Metabolon, which runs a metabolite screening and analysis service in Durham, North Carolina. “Now many of them are already looking to metabolomics as a way of complementing that data.”

There is still a long way to go, however. First, a new predictive model would need to be developed for humans, says Nicholson, although it would not be like starting from scratch. “We are not there yet, but this is the first step to personalized health care,” he says.

1 comment. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me