Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A robotic elbow brace that senses the intention of its user and aids movement should soon be available to help stroke survivors perform everyday tasks, such as turning off light switches. What’s more, early trials suggest the device acts as a therapeutic aid, markedly improving a patient’s ability to move even without the device.

The robotic aid “will make rehab easier and far more effective,” says Rutledge Ellis-Behnke, an MIT neuroscientist. “In addition, it will enable patients to work as much as they want for as long as they want. It enables additional rehab outside of the rehab hospital.”

Mira Sahney, president and one of the founders of Myomo, the Boston-based company that has been developing the brace, says they expect to have FDA approval, which requires certifying the safety of the device, within six weeks. Meanwhile, the robotic brace will be available for use in some New England clinics. By the end of this year or the beginning of 2007, depending on funding, the $6,000 machines should be available for general purchase and home use, she says. The company’s next steps include adapting the device for aiding movement of the wrist and hand, in addition to the elbow.

The “active” brace was invented in 2003 at MIT by engineering graduate students in a group led by Woodie Flowers, MIT professor of mechanical engineering. John McBean and Kailas Narendran, also founders of Myomo, used myoelectric sensors on the skin to detect faint voltage changes in underlying muscles as users attempted to move their arms. Since the signals “from someone who is essentially paralyzed are very, very small,” Sahney says, software and electronics are needed to filter out background noise and boost the signal to direct an electric motor to bend or extend the arm. Often patients can move their arms on their own to a certain point, but no further – at this point the signal from the muscles is interrupted. To fix this problem, the engineers have written software that helps “smooth out the signal,” filling in these interruptions in signal and allowing the motor to keep moving the patient’s arm. “A lot of times they’ll have dead areas, and so we try to help them get over that area,” she says.

0 comments about this story. Start the discussion »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »