Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A single treatment of drug-bearing nanoparticles effectively destroys prostate cancer tumors in mice, according to experiments by researchers at MIT and Harvard Medical School. This approach could lead to powerful treatments without the side effects associated with cancer therapy, say the scientists.

“We did a single injection of the particles, and then followed the tumor for the next 109 days, and showed that we basically had complete tumor elimination,” says Omid Farokhzad, assistant professor of anesthesia at Harvard Medical School, who, along with Robert Langer, chemical engineering professor at MIT, led the research. Because the ingredients used to make the nanoparticle drug system have already been okayed by the FDA for other purposes, the researchers hope to win quick approval for testing the new technology in humans. The results were published this week in the Proceedings of the National Academy of Sciences.

[For an image of cells with embedded nanoparticles, click here.] 

Because many patients receive regular screenings for prostate cancer, doctors increasingly discover and treat the disease at an early stage, when it is still confined to single tumors. At this stage, a single injection of radioactive materials directly into the tumor can be an effective treatment, killing the tumor over several months. But this treatment has side effects, such as erectile dysfunction, in about 40 percent of patients, says Farokhzad. Surgery, another option, has risks of complications. For later-stage cancer, chemotherapy is an option, but that also comes with side effects – and requires many doses.

The researchers believe the nanoparticles should provide the one-shot therapy advantage of radiation, but without the side effects, in part because the particles deliver drugs specifically to the inside of cancer cells, avoiding damage to healthy tissue.

To make the nanoparticles, the researchers mix together a prostate cancer drug (docetaxel) and polymers that are already FDA-approved (one of them is used for sutures). The polymer formed spheres with the drugs trapped within. The researchers then chemically attach pieces of RNA, called aptamers, to the surface of the spheres. The RNA folds into shapes that fit into complementary structures on the surface of prostate-cancer cells.

In the mouse experiments, researchers allowed tumors to grow to a certain size before injecting the targeted nanoparticles, or one of a variety of control substances, directly into the tumor. In controls using either saline, polymer nanoparticles without the drug, or the drug alone, almost all the mice died during the experiment. In contrast, all of the mice injected with the targeted nanoparticles survived, and in most cases (five out of seven) the tumors disappeared.

A key to the nanoparticles’ effectiveness is the ability of their RNA strands to bind to a cancer cell membrane. The cell then pulls the particles inside. Having the particles inside the cell has two advantages: it gets the drug where it needs to be to kill the cells, and it decreases the concentration of the drug outside the cancer cells, thereby decreasing toxicity to healthy tissue. The fact that the polymer releases the drug gradually also helps – the drug is released over the hours or days it takes for the particles to be pulled into cells, where it continues to be released, killing the cells.

2 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me