Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Musk points to a bright side. “I actually consider this first launch a partial success, because we were able to test so much hardware working together in flight, as well as empirically verify the payload environment (vibration and acoustics are worst during the liftoff phase),” he says. “The reason we started with Falcon 1 was specifically to test out the critical technologies at a small scale and without people on board before flying large vehicles with people. All complex technology developments are fraught with difficulty. Even the space shuttle has had two failures, despite almost a hundred billion dollars spent and tens of thousands of people working on it. It makes a lot more sense to work out the problems at a small scale with low-cost satellites than at a large scale with people.”

Nevertheless, since SpaceX’s more traditional approach to rocket development is different from many other new companies’, it will continue to be a focus of analysis. As aerospace consultant and rocket engineer Charles Lurio of Boston put it, “Sometimes taking a half-traditional, half-unconventional path creates a key wedge in upsetting an establishment applecart. But sometimes the conventional part of such a venture erodes one’s ability to do that.” Which is it with SpaceX? “It’s far too early to tell,” Lurio said.

Lurio emphasizes that SpaceX has done everything possible, within the confines of its chosen design, to follow the new-space mantra of “build a little, test a little.” “I’ve praised their patient testing on the ground,” Lurio said, “but it’s inescapable that to test an expendable in flight…is to lose everything if anything goes really wrong.”

That presents a daunting challenge for an engineer. “It’s like building a car new in every detail–engine, brakes, transmission, all of it,” Lurio says, “and requiring that the first time it actually engages gears and moves out of the garage, it flawlessly operates in every way over a transcontinental trip.”

And yet one of the paradoxes of this new business is that this inherently risky approach is seen by many as the “safer” path, because reusability, which allows for slow, incremental testing, is itself such a new concept in rocketry that it is seen–and for good reason–as an unproven innovation.

Musk himself remains undaunted by the initial launch failure. “SpaceX is in this for the long haul, and come hell or high water, we are going to make this work,” he said. He hopes to launch Falcon 1 again within six months and remains committed to flying the full-size Falcon 9, also from Kwajelein Atoll, in 2007.

0 comments about this story. Start the discussion »

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me