Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Roberta Miller, a home-care physician in New York who works with immobilized patients, has had several of her patients try out the device as part of laboratory testing. “They are excited and hopeful about the technology and hope it’s ready for them when they need it.”

One ALS patient, a biomedical scientist in Delaware, has already started testing the system in his home. In an e-mail he wrote using the device, he said, “[The brain-computer interface] improved my quality of life immediately. I couldn’t use my optical input device anymore.” He has been using the system for four to six hours a day to send e-mails and do other tasks and eventually will use it to write scientific manuscripts.

Wolpaw’s team is now selecting more patients to test out the new, simplified version of the device, which the Wadsworth Center created in collaboration with Cambridge Consultants, a product development company based in Boston and the United Kingdom. “Initially, the software had 10,000 different parameters. But if a caregiver is faced with a piece of software with 10,000 parameters, they may get frustrated and walk away,” says Mark Manasas, who manages Cambridge Consultants’ part of the project. “We want people with minimal computer understanding to be able to get this up and running with a couple of mouse clicks.”

The team also redesigned the EEG cap to make it easier to use. Most EEG caps used in research must be specifically fitted to a subject by a technician to provide reliable recordings. But the new cap can be adjusted to an individual once, then worn every day, and still yield reliable readings.

The scientists will use results from the current trial to figure out exactly what patients want and how they use the system. They ultimately hope to develop a small, portable version of the technology that costs less than $3,000 and would be covered by medical insurance.

Wolpaw’s device is one of a number of technologies under development to help people with neurodegenerative disease or spinal-cord injuries use computers or even robotic arms. However, many of these devices are invasive, requiring an implanted electrode to record or transmit electrical signals. While implanted devices will ultimately provide a wider range of capabilities, they present a greater risk to patients and will be more difficult to develop for broad use. “The field has really exploded in the last five years, but now the focus needs to be on showing it can do some good,” says Wolpaw. “There have been lots of lab successes, but in terms of providing people with things they can use and benefit from, that hasn’t happened yet.”

1 comment. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me