Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A highly versatile method for making nanoparticles has now been used to make multipurpose cancer treatment particles. According to Joseph DeSimone, chemistry and chemical engineering professor at the University of North Carolina at Chapel Hill and North Carolina State University, who presented the work at the American Chemical Society conference this week in Atlanta, the new synthesis method has potential applications in fuel cells, microfluidics, and vaccines as well.

[For images of the nano-molding method, click here.] 

The process has the “ability to create nanoparticles of nearly any shape or chemical composition. It is very, very promising,” says Shelton Earp, director of the Lineberger Comprehensive Cancer Center at UNC. Experts at the cancer center are now starting live animal tests of nanoparticles that were made using the method. The particles are designed to slip out of the bloodstream and deliver both drugs and imaging agents directly to cancer cells, sparing healthy cells. Such targeted delivery could significantly improve both the safety and effectiveness of cancer drugs. Earp says that within a year, separate studies will show whether particles made this way can safely and effectively combat skin and breast cancer in mice.

Researchers led by DeSimone created the nanoparticles out of a polymer and a cancer drug such as doxorubicin, forming 200 nanometer-sized particles – about the size of some viruses. Then they attached monoclonal antibodies that link to proteins prevalent in cancer cells, enabling targeted drug delivery. Imaging agents can also be attached to the outside of the particle, potentially allowing doctors to monitor where the drug is going. The polymer, which is the same material used in bio-absorbable sutures, should eventually break down and leave the body.

Several other research groups are now developing and testing nanoparticles for drug delivery. What sets this effort apart is the versatile molding method used to make the particles, which Robert Langer, chemical engineering professor at MIT, says is “quite impressive.” The method allows researchers to make very small and precisely controlled shapes out of organic materials, including ones known to be safe in the body.

As with any molding processes, DeSimone’s method begins with an original shape, called the “master,” that someone wants to copy. A material is then formed around this shape – this becomes the mold. The master is removed, and another material introduced, which is formed by the mold into a replica of the original shape. At the heart of this new nano method is a material for making molds called perfluoropolyether (PFPE), which starts as a liquid with the extraordinary ability to slip into every nook and cranny of the master without sticking to it. The researchers then convert the polymer into a flexible solid by exposing it to light, and remove the master – an easy step because the mold does not stick to the original and is flexible.

0 comments about this story. Start the discussion »

Tagged: Biomedicine, Materials

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me