Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The new electric sports cars use conventional lithium-ion batteries for the same reason they’re now used in laptop computers: they store a lot of energy in a small, light package. But several factors have kept these batteries out of widespread use in vehicles. One is cost – the Venturi Fetish sports car, for example, sells for over $500,000. The batteries are also tricky to operate safely in the large quantities needed in vehicles – overheating or damage can cause them to catch fire or explode (as led to last year’s Apple PowerBook battery recall). These batteries also have a short lifespan, losing their ability to hold a charge well over time, as anyone who’s owned a laptop for a few years knows.

New lithium-ion battery materials, however, may change all this. Safer chemistries have recently allowed manufacturers such as Milwaukee Electric Tool in Brookfield, WI, and DeWalt Industrial Tool of Baltimore MD, to start using lithium-ion batteries in abuse-prone power tools. The new materials could also extend the batteries’ lifetime, reduce their cost, and improve their performance.

In part, these advances have been due to nanotechnology. Lithium-ion batteries create a current by shuttling ions between the electrodes as the battery charges and discharges. The added surface area of nanoscale particles on electrode materials helps the ions escape, freeing more of them to travel and provide bursts of power or quick recharging.

Gotcher says that, in addition to testing their prototype for safety and performance, they plan to submit the batteries to the U.S. Department of Energy for standardized tests of battery safety and performance, including lifetime.

If the batteries do hold up to tests, widespread adoption of such a vehicle still may depend on other factors, such as gas stations installing power stations for quick charging, which will require more than a standard outlet. Gotcher says these stations could benefit from batteries, which would make it possible to draw energy from the power grid at off peak hours, saving on electricity costs, and then deliver it quickly when driver’s need it.

Altairnano is hardly the only company with promising new battery materials. “There are dozens of capable advanced battery manufacturers,” says Dave Goldstein, president of the Electric Vehicle Association of Greater Washington, DC and president of Program Development Associates, which does electric vehicle and advanced battery consulting. “Lithium-ion batteries are showing a tremendous amount of progress. There’s still work to be done to bring the lithium-ion battery to the level that automobile manufacturers expect. They’re looking for a more significant guarantee that these batteries will last at least 10 years. But the newer batteries have shown significant promise.”

40 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me