Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A little over a year ago, a British Medical Journal study showed that dogs could smell cancer. And this month a study in the journal Integrative Cancer Therapies showed similar results. Both articles provoked headlines and quite a bit of skepticism.

They also brought attention to the odors, or volatile organic compounds (VOCs), that the human body exudes in its day-to-day functioning and during a disease. These compounds, big and small, are found in human breath, and researchers at the State University of New York at Buffalo are building a chemical sensor that will examine a person’s breath to detect diseases. “It’s tantamount to trying to measure the surface of the earth, from Mount Everest…all the way down to the height of a raisin, and be able to see it all in detail,” says Frank Bright, professor of chemistry at SUNY Buffalo, who’s leading the research team.

Past research in this field has linked specific combinations of chemicals to specific diseases, Bright says. For example, acetone, ethane, and hydrogen peroxide are associated with diabetes, and mono-methylated alkanes with breast cancer. These compounds can be detected using expensive, bulky machines, such as gas chromatographs and mass spectrometers.

In contrast, the Buffalo device is designed to be a tube the size of a roll of quarters, containing an array of xerogel sensors and a complementary metal oxide semiconductor (CMOS) detector. “Everything can be integrated on a silicon chip with processing circuitry, to make things more compact, less expensive, and lower power,” says Albert Titus, a professor of electrical engineering at SUNY Buffalo who’s working on the sensor.

Xerogels are glass-like materials with nanoscopic pores into which the researchers can infuse tiny, chemically sensitive fluorescent dye molecules. Using pin printing, a genomics technique, they can deposit hundreds of these molecules, each about 10 micrometers in size, on top of a light-emitting diode, which stimulates the sensors to emit light. In the presence of a targeted VOC, the fluorescent molecules respond in a particular way, such as by emitting light with a certain color or intensity.

Ideally, one xerogel sensor would detect one chemical compound, Bright says. But since many different compounds are made of the same elements, or can have similar chemical structures, a sensor could make mistakes in attempting to differentiate between two similar compounds. To deal with that, the researchers are making many sensors that respond to the same VOC in different ways, so if one makes a mistake, most of the others will likely identify a VOC correctly. Although other people are working on similar devices, no one has anywhere near as many sensing elements, Bright says. So far, the Buffalo team has built sensors that respond to some 100 different chemicals.

The CMOS detector will convert the sensors’ optical patterns into electrical signals, which will be analyzed by pattern-recognition software – similar to that used in recognizing handwriting. In this way, the system will identify different chemicals based on their electrical signal patterns.

But the identification of chemicals goes only so far in detecting disease, because a given chemical is often associated with different diseases. For instance, acetone is associated with both diabetes and early-stage lung cancer. Rather, it’s the combination of many different compounds that points to one particular disease.

5 comments. Share your thoughts »

Tagged: Biomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me