Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The RPI researchers are also working with scientists who used nanotubes as adhesives, mimicking the structures that allow geckos to cling to walls. The extremely high surface area of the nanotubes creates enough friction to hold two surfaces together. One possibility that uses the flexible plastic is a souped-up version of Velcro.

The RPI work is part of a much larger research effort to combine nanotubes with polymers and other flexible materials. “Flexible nanotube-polymer films will find a large range of applications, not only for electronics, but also for sensing applications and even optical applications,” says Liming Dai, professor of materials engineering and chemistry at the University of Dayton in Ohio, who recently developed a chemical sensor using nanotubes embedded in plastic. “It’s an important area. Now is the time for people to push these things toward real applications.”

Home page image courtesy of Yung Joon Jung, Northeastern University, Boston MA. Caption: A sample of the plastic with embedded half-millimeter-wide dots of nanotubes.

14 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me