Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The unique electronic properties of carbon nanotubes make them promising for a range of applications, including use as ultra-efficient “electron emitters” in bright, low-power displays. Now researchers have found a way to pattern carbon nanotubes in plastic sheets that could lead to flexible versions of these displays – and electronics that you could roll up and put in your pocket.

Several companies, such as Samsung and Motorola, are developing carbon nanotube-based displays that take advantage of the fact that nanotubes can emit electrons extremely efficiently. Like familiar bulky cathode ray tube (CRT) displays, these nanotube versions use electrons to excite phosphors on a screen to produce an image. But unlike standard CRTs, nanotubes displays can be flat, and they use much less energy than other flat-panel technologies.

The new method developed by researchers at Rensselaer Polytechnic Institute (RPI), Northeastern University, and New Mexico State University, could lead to flexible, flat-screen CRTs. The process begins with a pre-patterned surface that controls where multi-walled nanotubes grow. Next, the researchers pour a liquid over the nanotubes and cook it until it forms a polymer. They then peel off the polymer along with the nanotubes. The polymer preserves the nanotube pattern down to the positions of individual nanotubes and keeps them aligned in one direction.

For display applications, where single nanotubes must be isolated from others to get the best efficiencies, the researchers strip off a layer of polymer to expose the tips of nanotubes, then burn off long or tangled nanotubes, leaving only isolated ones. This method has produced very efficient electron emission, the researchers say. “The results we’ve seen are some of the best that have been reported in the literature,” says Swastik Kar, a postdoctoral research in materials science and engineering at RPI and lead author of the paper.

To be sure, the patterned nanotubes are just the first step toward a flexible nanotube display, which, in addition to the nanotube emitters, requires electronics for addressing individual pixels of the display, and a way of making a similarly flexible phosphor layer. The structure will also need to be sturdy enough to maintain a vacuum inside the device. In all, it will likely be at least a few years before a prototype display is ready, says Kar.

The nanotube-plastic composites may lead to other applications. The ability to carefully control patterns of nanotubes may lead to other kinds of flexible, nanotube-based electronics. Also, the plastic-nanotube films can detect small changes in pressure: as the plastic film is compressed, the nanotubes get rearranged, the researchers say, producing a detectable change in the conductivity of the material. This pressure sensitivity is something like the sense of touch, leading the researchers to call their invention “nano-skin.”

15 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me