Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at the University of Toronto have shown, in a study published in the February 24 issue of Physical Review Letters, that one of the present liabilities of quantum cryptography can be turned into an advantage. Using “quantum decoys,” Professor Hoi-Kwong Lo and his team are increasing the distance that quantum-encrypted data can be sent over fiber-optic cable.

Quantum cryptography uses particles of light called photons to create and send keys used for coding and decoding messages. A photon can transmit bits of a key by representing a 1 or 0, depending on a property called polarization. The sender of this key (physicists call her “Alice”) transmits a string of randomly polarized single photons to the recipient (“Bob”), who collects each photon, one at a time.

The reason this technique is so secure is that photons possess a safeguard inherent in quantum mechanics. For an eavesdropper to listen in, he or she must tap the fiber-optic line and measure the polarization of the photons with a detector as the photons arrive. But quantum mechanics dictates that any measurement, such as the one taken by the eavesdropper, unavoidably modifies the polarization. This means that Bob would notice if a transmission had been intercepted – as soon as he and Alice compared notes (over a channel that doesn’t need to be secure) about the polarization of photons sent and received. Any inconsistency in the sent and received photons would alert them to the fact that the key had been stolen.

A problem arises, however, when more than a single photon is inadvertently sent at a time -– a common occurrence since no perfect single photon emitter exists. This happens, says Jonathan Habif, quantum information research scientist at BBN Technologies, because scientists send pulses of laser light through a series of filters until only one photon squeezes through; but the filtering process isn’t perfect, and sometimes more than one photon per pulse gets through.

When two photons of the same polarization are sent, one of them can be picked off by the eavesdropper, while the other one will go through unchanged, as if nothing is amiss. Additionally, Habif says, in order to send a quantum-encrypted key farther, the initial light from the laser must be more intense, which means there must be more photons to begin with, thus increasing the likelihood that more than one photon will squeak through the filters.

5 comments. Share your thoughts »

Tagged: Computing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me