Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

While President Bush spoke this week about a new kind of highly efficient hybrid vehicle, on a visit to battery-maker Johnson Controls in Milwaukee, WI, an article appeared in the current issue of Science describing the latest in a series of recent advances that could make hybrids, and even all-electric vehicles, practical.

Researchers have long known that a material based on lithium, nickel, and manganese could be used to make lithium-ion batteries that store large amounts of energy. The problem has been that batteries based on this material could be charged and discharged only slowly, otherwise the amount of energy they could store would drop dramatically.

In the Science paper, researchers at MIT and the State University of New York (SUNY) in Stony Brook described a way around the problem. The breakthrough came last summer, when Kisuk Kang, a materials science graduate student at MIT, created a computer model that showed that when it was under conditions of high power, disorder in the lithium-nickel-manganese material caused it to compress and trap the lithium ions that allow electricity to flow. The researchers then synthesized a version of this material without this disorder, freeing the ions to move quickly.

The newly structured material might be a candidate for replacing the batteries used in today’s hybrids cars. But its real value could come in taking advantage of both its power and high energy storage capacity in a different kind of hybrid, known as a plug-in hybrid – the potentially highly-efficient vehicle Bush spotlighted in his speech on Monday, saying these cars could eventually get 100 miles per gallon. The new technology could also help make all-electric vehicles practical.

President Bush came to Johnson Controls, which last fall announced a new center of excellence for developing lithium-ion batteries for hybrids, to talk up his Advanced Energy Initiative, first announced in this year’s State of the Union address. The Bush administration’s 2007 budget provides $31 million for battery technology research, compared with $150 million for research into deriving ethanol from biomass, and nearly twice that amount, $288 million, for hydrogen fuel-cell research.

Unlike today’s hybrids, which ultimately depend on gasoline for power, but run efficiently by storing extra energy in batteries, a plug-in hybrid would use energy from the outlet in a garage, charging overnight, and would run completely on electricity for distances typical in a daily commute. The gasoline-powered engine would only kick in for long trips, after the batteries were depleted. This type of hybrid could save significant amounts of gasoline, since something like 75 percent of daily driving is for short trips, says Gerbrand Ceder, the materials science professor at MIT who led the effort to develop the new material.

12 comments. Share your thoughts »

Tagged: Business

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me