Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Using this method, Suresh was able to show that previous estimates of cell stiffness were as much as four times too low. While these findings have not yet been applied, they should help researchers select among potential drugs and dosages for treating malaria, Suresh says.

In addition to studying malaria, Suresh has used these so-called microplate stretchers to measure how pancreatic cells change when supplied with a lipid that’s suspected of playing a role in metastasis (the spread of cancer cells inside the body).

Those experiments suggested that the lipid makes the cancerous cells flexible enough to squeeze through small pores that would otherwise block their spread. Such evidence could direct efforts at preventing metastasis.

Suresh’s work on malaria continues as well: since some strains of the disease cannot be cultured in labs, he’s designing inexpensive portable measuring devices to take into the field.

Suresh also plans to build microfluidic channels that mimic the body’s capillaries, possibly creating a testbed for the effects of treatments on blood samples taken from various patients, allowing for personalized medical treatment.

With the aid of computer models that Suresh has helped develop, micromechanical measurements may even reveal how the structure of diseased cells changes on a molecular scale. A group of researchers at the Institut Pasteur in Paris, one of the GEM4 members, is selectively knocking out genes in the malaria parasite that encode different proteins. Suresh can measure the stiffness of cells infected with the knockout strain, and computer models can then help identify how the missing protein fits into complex networks that control the stiffness of the membranes of red blood cells.

Such models are commonly used by engineers for analyzing synthesized materials – but the microbiologists at Pasteur didn’t think of applying them to cell biology until one of their members happened to strike up a conversation with Suresh in a Parisian cafeteria.

Suresh hopes these cross-fertilizations become regular occurrences through the consortium. “As people from one discipline move into a seemingly distant discipline with a fresh perspective,” he says, “they collectively move the field to a higher level.”

Genviève Milon of the Institut Pasteur, who has worked with Suresh, agrees. The collaboration “has created a unique niche at the interface between the two very different but related fields: life sciences and material science,” she says.

0 comments about this story. Start the discussion »

Tagged: disease, malaria

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me