Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

George Church, a geneticist at Harvard Medical School in Boston, was one of the pioneers in the Human Genome Project. Now he’s hatching a new genomic enterprise – the Personal Genome Project (PGP). Church and collaborators plan to build a database that will integrate individual genomes, medical histories, and other information about each project participant, enabling scientists to do more comprehensive genetic research – and help advance the field of personalized medicine.

While true personalized medicine is still just a goal – scientists need to develop cheaper, faster sequencing technologies before individual genome sequences even become widely available – Church hopes the project will help create that future.

And by using real medical and genomic data from specific people, the project could also create test cases for the legal and ethical issues surrounding the availability of personal and genomic records. This would give ethicists, legislators, and scientists concrete examples to study.

Technology Review: What is the Personal Genome Project?

George Church: This is a way of making personal genomics accessible for research. Some well-informed candidates will give full permission for a highly integrated set of medical resources [such as medical records] to be made publicly available.

TR: How is this different from the human genome project?

GC: The human genome was about the DNA of a single, anonymous person. The PGP is about the whole person, including their genomic information. It’s hard to do genetics with just genes. You need to connect facts about the person with the facts about DNA. You can think of it as the next step of the project.

TR: What information do you plan to collect?

GC: Conventional electronic medical records, the usual ‘omics, including RNA, proteomes, and metabolite measures, as well as imaging data, such as magnetic resonance imaging. This will give a rich phenotype, the same type of information you might want for any model organism.

TR: You have said that you hope this project will spur new technologies, biological research, and ethical guidelines. Can you elaborate?

GC: The technological goal is cheaper, faster sequencing. The biological goal is to provide a shared set of resources that academics and companies can use to do later medical analysis. The social aspect is to try to be proactive in dealing with one of the biggest problems with genomic medical research – the anonymity [of genomic data].

TR: How will the PGP spur new technologies, such as sequencing?

GC: Sequencing costs are already being brought down rapidly by alternatives to conventional sequencing. We want to get the cost of sequencing down to the point where many people can afford it, or at least break even in terms of possible medical advantages.

These technologies will also spur the PGP, and the PGP will allow technology to be applied to an interesting human sample. The PGP will provide DNA and other resources freely to anyone who wants them, such as companies developing high-throughput sequencing. And then PGP will get back the data to add to the database.

0 comments about this story. Start the discussion »

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me